Skip to main content
Log in

Evaluation of Therapeutic Equivalence for the Follow-On Version of Intravenously Administered Non-Biological Complex Drugs

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The interchangeability evaluation for generic drugs formulated as intravenous injections normally only requires assessments of pharmaceutical equivalence (PE) when the medicinal products are simple small-molecule drugs. However, intravenously administered non-biological complex drugs (NBCDs), such as liposomes, microsphere suspension, or fat emulsion, have inherent passive disposition selectivity due to their special formulations, thereby the in vivo drug performances are improved. Because of the complexity in formulation, the in vitro pharmaceutical investigations of follow-on NBCDs are more complicated than those required for generic small-molecule drugs. In addition to qualitative and quantitative sameness of the active and inactive ingredients, it is required to comparatively study the static and kinetic microscopic particle-related physiochemical properties of the follow-on NBCDs versus the reference products. Moreover, for complex formulations that have a significant impact on the biodistribution of the drug compound, an in vivo bioequivalence (BE) study is also important. Since NBCDs that demonstrated bioequivalence through the conventional BE approach have been found inequivalent in efficacy or safety to the reference products, pivotal BE studies for follow-on NBCDs are required to take both encapsulated/total drug and free drug as the analytes to address release kinetics and biodistribution of the active pharmacological ingredient in the body. This manuscript reviews the 26 U.S. FDA published product-specific guidelines for intravenous injections. In general, these NBCDs can be stratified into four groups according to their release kinetics and ability of bio-membrane penetration. Group 1 consists of seven small-molecule, non-complex drugs; group 2 included four NBCDs with either microscale particle size or rapid dissolution property; group 3 include five loosely packed NBCDs (fat emulsions) and one quickly released ophthalmic liposomal drug; and the last group contains four cytotoxic liposomal or protein-bound NBCDs and five iron carbohydrate complexes. The requirements of the corresponding guidelines range from simple proof of PE between the test and the reference products, to a collection of studies that demonstrate the key manufacturing process (e.g. liposome loading), the particle- or vehicle-wise static and kinetic physiological characterizations, the dissolution test, and BE evaluation of both total/encapsulated drug form and free drug form between the follow-on NBCDs and their reference products. Such studies are challenging in implementation. Therefore, a variety of alternative approaches are proposed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Crommelin DJA, et al. Different pharmaceutical products need similar terminology. AAPS J. 2014;16:11–4.

    Article  CAS  Google Scholar 

  2. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87.

    Article  CAS  Google Scholar 

  3. Navya PN, Kaphle A, Daima HK. Nanomedicine in sensing, delivery, imaging and tissue engineering: advances, opportunities and challenges. Nanoscience. 2019;5:30–56.

    Article  CAS  Google Scholar 

  4. Crommelin DJA, de Vlieger JSB, Mühlebach S. Introduction: defining the position of nonbiological complex drugs. Non-biological complex drugs: the science and the regulatory landscape. Berlin: Springer; 2015.

    Google Scholar 

  5. Crommelin DJ, Shah VP, Klebovich I, et al. The similarity question for biologicals and non-biological complex drugs. Eur J Pharm Sci. 2015;76:10–7.

    Article  CAS  Google Scholar 

  6. Vishakha A, Stephan S. NBCD pharmacokinetics and bioanalytical methods to measure drug release. Non-biological complex drugs: the science and the regulatory landscape. Berlin: Springer; 2015.

    Google Scholar 

  7. Schellekens H, Klinger E, Mühlebach S, Brin JF, Storm G, Crommelin DJ. The therapeutic equivalence of complex drugs. Regul Toxicol Pharmacol. 2011;59(1):176–83.

    Article  CAS  Google Scholar 

  8. Holloway C, Mueller-Berghaus J, Lima BS, et al. Scientific considerations for complex drugs in light of established and emerging regulatory guidance. Ann N Y Acad Sci. 2012;1276:26–36.

    Article  Google Scholar 

  9. Klein K, Stolk P, De Bruin ML, Leufkens HGM, Crommelin DJA, De Vlieger JSB. The EU regulatory landscape of non-biological complex drugs (NBCDs) follow-on products: observations and recommendations. Eur J Pharm Sci. 2019;133:228–35.

    Article  CAS  Google Scholar 

  10. Kurki P, van Aerts L, Wolff-Holz E, Giezen T, Skibeli V, Weise M. Interchangeability of biosimilars: a European perspective. BioDrugs. 2017;31(2):83–91.

    Article  CAS  Google Scholar 

  11. US FDA. Biosimilar and Interchangeable Products. Available at: https://www.fda.gov/drugs/biosimilars/biosimilar-and-interchangeable-products#interchange

  12. Stern ST, Hall JB, Yu LL, Wood LJ, Paciotti GF, Tamarkin L, et al. Translational considerations for cancer nanomedicine. J Control Release. 2010;146:164–74.

    Article  CAS  Google Scholar 

  13. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.

    Article  CAS  Google Scholar 

  14. Mei L, Zhang Z, Zhao L, Huang L, Yang XL, Tang J, Feng SS. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev. 2013;65:880–90.

    Article  CAS  Google Scholar 

  15. Jiang W, Kim BY, Rutka JT, Chan WC. Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv. 2007;4:621–33.

    Article  CAS  Google Scholar 

  16. Zhang J, Li X, Huang L. Non-viral nanocarriers for siRNA delivery in breast cancer. J Control Release. 2014;190:440–50.

    Article  CAS  Google Scholar 

  17. Duncan R, Gaspar R. Nanomedicine(s) under the microscope. Mol Pharm. 2011;8:2101–41.

    Article  CAS  Google Scholar 

  18. Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. Guidance for Industry. US FDA; Apr 2015. Available at: https://www.fda.gov/media/82647/download. Accessed 15 Feb 2020.

  19. Pai AB. Complexity of intravenous iron nanoparticle formulations: implications for bioequivalence evaluation. Ann N Y Acad Sci. 2017;1407(1):17–25.

    Article  CAS  Google Scholar 

  20. Stein J, Dignass A, Chow KU. Clinical case reports raise doubts about the therapeutic equivalence of an iron sucrose similar preparation compared with iron sucrose originator. Curr Med Res Opin. 2012;28(2):241–3.

    Article  CAS  Google Scholar 

  21. Wu X, Tan Y, Mao H, Zhang M. Toxic effects of iron oxide nanoparticles on human umbilical vein endothelial cells. Int J Nanomedicine. 2010;5:385–99.

    Article  CAS  Google Scholar 

  22. Zhao J, Castranova V. Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Health B Crit Rev. 2011;14(8):593–632.

    Article  CAS  Google Scholar 

  23. Mamidi RN, Weng S, Stellar S, et al. Pharmacokinetics, efficacy and toxicity of different pegylated liposomal doxorubicin formulations in preclinical models: is a conventional bioequivalence approach sufficient to ensure therapeutic equivalence of pegylated liposomal doxorubicin products? Cancer Chemother Pharmacol. 2010;66(6):1173–84.

    Article  CAS  Google Scholar 

  24. Driscoll D, Nicoli D. Analytical methods for determining the size (distribution) in parenteral dispersions. Non-biological complex drugs the science and the regulatory landscape. Berlin: Springer; 2015. p. 200.

    Google Scholar 

  25. Kim KM, Choi BM, Park SW, et al. Pharmacokinetics and pharmacodynamics of propofol microemulsion and lipid emulsion after an intravenous bolus and variable rate infusion. Anesthesiology. 2007;106(5):924–34.

    Article  CAS  Google Scholar 

  26. Jung JA, Choi BM, Cho SH, et al. Effectiveness, safety, and pharmacokinetic and pharmacodynamic characteristics of microemulsion propofol in patients undergoing elective surgery under total intravenous anaesthesia. Br J Anaesth. 2010;104(5):563–76.

    Article  CAS  Google Scholar 

  27. Danielson BG. Structure, chemistry, and pharmacokinetics of intravenous iron agents. J Am Soc Nephrol. 2004;15(Suppl 2):S93–S9898.

    Google Scholar 

  28. Jahn MR, Andreasen HB, Fütterer S, et al. A comparative study of the physicochemical properties of iron isomaltoside 1000 (Monofer), a new intravenous iron preparation and its clinical implications. Eur J Pharm Biopharm. 2011;78(3):480–91.

    Article  CAS  Google Scholar 

  29. Barrow M, Taylor A, García Carrión J, et al. Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast. Contrast Media Mol Imaging. 2016;11(5):362–70.

    Article  CAS  Google Scholar 

  30. Lee ES, Park BR, Kim JS, Choi GY, Lee JJ, Lee IS. Comparison of adverse event profile of intravenous iron sucrose and iron sucrose similar in postpartum and gynecologic operative patients. Curr Med Res Opin. 2013;29(2):141–7.

    Article  CAS  Google Scholar 

  31. US FDA. Bioequivalence recommendations for specific products [EB/OL]. Rockville, MD: US FDA; 28 May 2014 [2 Jan 2018]. Available at: https://www.fda.gov/downloads/GuidanceComplianceRegulatoryInformatoin/Guidances/UCM072872.pdf.

  32. European Medicines Agengy. Product-specific bioequivalence guidance [EB/OL]. London: EMA; 1 Jan 2013 [2 Jan 2018]. Available at: https://www.ema.europa.eu/documents/scientific-guideline/concept-paper-development-product-specific-guidance-demonstration-bioequivalence_en.pdf

  33. European Medicines Agengy. Pegylated liposomal doxorubicin hydrochloride concentrate for solution 2 mg/ml product-specific bioequivalence guidance [EB/OL]. London: EMA; 13 Dec 2018 [1 Jul 2019]. Available at: https://www.ema.europa.eu/en/documents/scientific-guideline/pegylated-liposomal-doxorubicin-hydrochloride-concentrate-solution-2-mg/ml-product-specific-bioequivalence-guidance_en.pdf.

  34. US FDA. Draft guidance on Angiotensin II Acetate [EB/OL]. Rockville, MD: US FDA; Feb 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/ANGIOTENSIN%20II%20ACETATE%20IV%20infusion%20solution%20NDA%20209360%20RC%20Feb%202019.pdf

  35. US FDA. Draft guidance on Daptomycin [EB/OL]. Rockville, MD: US FDA; Feb 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/DAPTOMYCIN%20IV%20infusion%20powder%20NDA%20209949%20&%20NDA%20208385%20Page%20Feb%202019.pdf

  36. US FDA. Draft guidance on Eravacycline Dihydrochloride [EB/OL]. Rockville, MD: US FDA; May 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/ERAVACYCLINE%20DIHYDROCHLORIDE%20POWDER%20INTRAVENOUS%20NDA%20211109%20PSG%20Page%20RC%20May%202019.pdf

  37. US FDA. Draft guidance on Letermovir [EB/OL]. Rockville, MD: US FDA; Nov 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Letermovir_IV_infusion_solution_NDA_209940_RC_Oct_2018.pdf

  38. US FDA. Draft guidance on Lutetium dotatate Lu-177 [EB/OL]. Rockville, MD: US FDA; Nov 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_208700.pdf

  39. US FDA. Draft guidance on Omadacycline Tosylate [EB/OL]. Rockville, MD: US FDA; Nov 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_209817.pdf

  40. US FDA. Draft guidance on Plazomicin sulfate [EB/OL]. Rockville, MD: US FDA; Sep 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_210303.pdf

  41. US FDA. Draft guidance on Sulfur Hexafluoride Lipid-type A Microsphere [EB/OL]. Rockville, MD: US FDA; Sep 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Sulfur%20hexafluoridelipid%20Type-A%20microspheresuspension%20203684RC%2009-2018.pdf

  42. US FDA. Draft guidance on Perflutren [EB/OL]. Rockville, MD: US FDA; Sep 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Perflutren%20Liposomal%20Injection%20RLD%20021064%20RC%2009-2018%20.pdf

  43. US FDA. Draft guidance on Dantrolene Sodium [EB/OL]. Rockville, MD: US FDA; Oct 2017. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Dantrolene%20sodium_intravenous%20suspension_NDA%20205579_RC08-17.pdf

  44. US FDA. Draft guidance on Azacitidine [EB/OL]. Rockville, MD: US FDA; Apr 2014. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/PSG_050794.pdf

  45. US FDA. Draft guidance on Verteporfin [EB/OL]. Rockville, MD: US FDA; Apr 2014. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Verteporfin_liposomal_inj_21119_RC04-14.pdf

  46. US FDA. Draft guidance on Propofol [EB/OL]. Rockville, MD: US FDA; Jun 2016. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Propofol_injectable%20injection_RLD%2019627_RC06-16.pdf

  47. US FDA. Draft guidance on Fish oil; Medium chain triglycerides; Olive oil; Soybean oil [EB/OL]. Rockville, MD: US FDA; Feb 2019. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Fish%20oil;%20Medium%20chain%20triglycerides;%20Olive%20oil;%20Soybean%20oil%20NDA%20207648%20Feb%202019.pdf

  48. US FDA. Draft guidance on Doxorubicin Hydrochloride [EB/OL]. Rockville, MD: US FDA; Sep 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Doxorubicin%20Hydrochloride_draft_Injection%20injec%20lipo_RLD%2050718_RC09-18.pdf

  49. US FDA. Draft guidance on Daunorubicin Citrate [EB/OL]. Rockville, MD: US FDA; July 2014. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Daunorubicin%20citrate_lipoinj_50704%20RC07-14.pdf

  50. US FDA. Draft guidance on Amphotericin B [EB/OL]. Rockville, MD: US FDA; Jan 2016. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Amphotericin%20B_%20Liposomal%20injection_RLD%20050740_RV01-16.pdf

  51. US FDA. Draft guidance on Paclitaxel [EB/OL]. Rockville, MD: US FDA; Sep 2012. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Paclitaxel_inj_RC09-12.pdf

  52. US FDA. Draft guidance on Iron Dextran [EB/OL]. Rockville, MD: US FDA; Oct 2016. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Iron%20dextran_injetion_RLD%20017441_RC09-16.pdf.

  53. US FDA. Draft guidance on Ferric Carboxymaltose [EB/OL]. Rockville, MD: US FDA; Apr 2016. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/FERRIC%20CARBOXYMALTOSE_injection_RLD%20203565_RC04-16.pdf.

  54. US FDA. Draft guidance on Iron Sucrose [EB/OL]. Rockville, MD: US FDA; Nov 2013. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Iron_sucrose_inj_21135_RV11-13.pdf.

  55. US FDA. Draft guidance on Ferumoxytol [EB/OL]. Rockville, MD: US FDA; Oct 2012. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Ferumoxytol_ivsol_22180_RC12-12.pdf.

  56. US FDA. Draft guidance on Sodium Ferric Gluconate Complex [EB/OL]. Rockville, MD: US FDA; Jun 2013. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Sodium_ferric_gluconate_complex_inj_20955_RC06-13.pdf

  57. Hsu LF, Huang JD. A statistical analysis to assess the most critical bioequivalence parameters for generic liposomal products. Int. J Clin Pharmacol Ther. 2014;52(12):1071–82.

    Article  CAS  Google Scholar 

  58. Parr A, Gupta M, Montague TH, Hoke F. Re-introduction of a Novel Approach to the Use of Stable Isotopes in Pharmacokinetic Studies. AAPS J. 2012;14(3):639–45.

    Article  CAS  Google Scholar 

  59. Goyal N, Mohamed K, Rolfe K, et al. Application of the Stable Isotope Label Approach in Clinical Development—Supporting Dissolution Specifications for a Commercial Tablet Product with Tafenoquine, a Long Half-life Compound. AAPS J. 2018;20(4):74. https://doi.org/10.1208/s12248-018-0234-5.

    Article  CAS  Google Scholar 

  60. Visser SAG, Bueters TJH. Assessment of translational risk in drug research: Role of biomarker classification and mechanism-based PKPD concepts. Eur J Pharm Sci. 2017;109:S72–7.

    Article  CAS  Google Scholar 

  61. Clinical Pharmacology and Biopharmaceutics Reviews. Application number: 205579Orig1s000. Center for Drug Evaluation and Research, US FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/205579Orig1s000ClinPharmR.pdf.

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZS performed the literature search and drafted the manuscript; JJ was responsible for manuscript review; and XC had the idea for the article, and drafted and critically revised the manuscript.

Corresponding author

Correspondence to Xia Chen.

Ethics declarations

Funding

This study was supported by the National Grant for New Drug Development (2017ZX09304018) and Chinese National Natural Fund Grant (81671369).

Conflicts of interest

Zhuo Sun, Ji Jiang and Xia Chen declare they have no potential conflicts of interest that may be relevant to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Jiang, J. & Chen, X. Evaluation of Therapeutic Equivalence for the Follow-On Version of Intravenously Administered Non-Biological Complex Drugs. Clin Pharmacokinet 59, 995–1004 (2020). https://doi.org/10.1007/s40262-020-00889-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-020-00889-9

Navigation