Skip to main content
Log in

Setting the Dose of Checkpoint Inhibitors: The Role of Clinical Pharmacology

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Cancer immunotherapy is based on checkpoint inhibitors (CPIs) that significantly improve the clinical outcome of several malignant diseases. These inhibitors are monoclonal antibodies (mAbs) directed at cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death 1 (PD-1), or programmed death-ligand 1 (PD-L1), sharing most of the clinical pharmacokinetic characteristics of mAb targeted therapies, all of which differ from those of cytotoxics and small molecules. Establishing the labeled dose of mAbs, and particularly of the CPIs, represents a true challenge. This review therefore examines the main criteria used for dose selection, along with their limits. The relationships between CPI pharmacokinetic parameters and treatment outcome (efficacy and/or toxicity) differ somewhat among the various drugs, but general features can be identified. Nevertheless, the interpretation of these relationships remains quite controversial. A first interpretation asserts that inter-individual pharmacokinetic variability in clearance has an impact on outcome and should be taken into consideration for dosing individualization. The second considers that higher clearance values observed in some patients result from characteristics associated with poor predictive factors of efficacy. Finally, the schedule, and particularly its frequency of administration, merits rethinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Liu JKH. The history of monoclonal antibody development—progress, remaining challenges and future innovations. Ann Med Surg. 2014;3:113–6.

    Google Scholar 

  2. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. mAbs. 2015;7:9–14.

    PubMed  CAS  Google Scholar 

  3. Imamura CK. Therapeutic drug monitoring of monoclonal antibodies: applicability based on their pharmacokinetic properties. Drug Metab Pharmacokinet. 2019;34:14–8.

    PubMed  CAS  Google Scholar 

  4. Wong H, Chow TW. Physiologically based pharmacokinetic modeling of therapeutic proteins. J Pharm Sci. 2017;106:2270–5.

    PubMed  CAS  Google Scholar 

  5. Tabrizi MA, Tseng CML, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11:81–8.

    PubMed  CAS  Google Scholar 

  6. Berinstein NL, Grillo-Lopez AJ, White CA, Bence-Bruckler I, Maloney D, Czuczman M, et al. Association of serum rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1998;9:995–1001.

    PubMed  CAS  Google Scholar 

  7. Azzopardi N, Lecomte T, Ternant D, Boisdron-Celle M, Piller F, Morel A, et al. Cetuximab pharmacokinetics influences progression-free survival of metastatic colorectal cancer patients. Clin Cancer Res. 2011;17:6329–37.

    PubMed  CAS  Google Scholar 

  8. Caulet M, Lecomte T, Bouché O, Rollin J, Gouilleux-Gruart V, Azzopardi N, et al. Bevacizumab pharmacokinetics influence overall and progression-free survival in metastatic colorectal cancer patients. Clin Pharmacokinet. 2016;55:1381–94.

    PubMed  CAS  Google Scholar 

  9. Feng Y, Roy A, Masson E, Chen T-T, Humphrey R, Weber JS. Exposure-response relationships of the efficacy and safety of ipilimumab in patients with advanced melanoma. Clin Cancer Res. 2013;19:3977–86.

    PubMed  CAS  Google Scholar 

  10. Basak EA, Koolen SLW, Hurkmans DP, Schreurs MWJ, Bins S, Oomen-de Hoop E, et al. Correlation between nivolumab exposure and treatment outcomes in non–small-cell lung cancer. Eur J Cancer. 2019;109:12–20.

    PubMed  CAS  Google Scholar 

  11. Kim H-D, Park S-H. Immunological and clinical implications of immune checkpoint blockade in human cancer. Arch Pharm Res. 2019;42:567–81.

    PubMed  CAS  Google Scholar 

  12. Sheng J, Srivastava S, Sanghavi K, Lu Z, Schmidt BJ, Bello A, et al. Clinical pharmacology considerations for the development of immune checkpoint inhibitors. J Clin Pharmacol. 2017;57:S26–42.

    PubMed  CAS  Google Scholar 

  13. Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol. 2018;11(1):8. https://doi.org/10.1186/s13045-017-0552-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Centanni M, Moes DJAR, Trocóniz IF, Ciccolini J, van Hasselt JGC. Clinical pharmacokinetics and pharmacodynamics of immune checkpoint inhibitors. Clin Pharmacokinet. 2019;58:835–57.

    PubMed  PubMed Central  Google Scholar 

  15. Tosi D, Laghzali Y, Vinches M, Alexandre M, Homicsko K, Fasolo A, et al. Clinical development strategies and outcomes in first-in-human trials of monoclonal antibodies. J Clin Oncol. 2015;33:2158–65.

    PubMed  CAS  Google Scholar 

  16. Viala M, Vinches M, Alexandre M, Mollevi C, Durigova A, Hayaoui N, et al. Strategies for clinical development of monoclonal antibodies beyond first-in-human trials: tested doses and rationale for dose selection. Br J Cancer. 2018;118:679–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Ascierto PA, Del Vecchio M, Robert C, Mackiewicz A, Chiarion-Sileni V, Arance A, et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2017;18:611–22.

    PubMed  CAS  Google Scholar 

  18. Deng R, Bumbaca D, Pastuskovas CV, Boswell CA, West D, Cowan KJ, et al. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. mAbs. 2016;8:593–603.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Stroh M, Winter H, Marchand M, Claret L, Eppler S, Ruppel J, et al. Clinical pharmacokinetics and pharmacodynamics of atezolizumab in metastatic urothelial carcinoma. Clin Pharmacol Ther. 2017;102:305–12.

    PubMed  CAS  Google Scholar 

  20. Patnaik A, Kang SP, Rasco D, Papadopoulos KP, Elassaiss-Schaap J, Beeram M, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21:4286–93.

    PubMed  CAS  Google Scholar 

  21. Elassaiss-Schaap J, Rossenu S, Lindauer A, Kang S, de Greef R, Sachs J, et al. Using model-based “learn and confirm” to reveal the pharmacokinetics-pharmacodynamics relationship of pembrolizumab in the KEYNOTE-001 trial. CPT Pharmacometr Syst Pharmacol. 2017;6:21–8.

    CAS  Google Scholar 

  22. Baverel PG, Dubois VFS, Jin CY, Zheng Y, Song X, Jin X, et al. Population pharmacokinetics of durvalumab in cancer patients and association with longitudinal biomarkers of disease status. Clin Pharmacol Ther. 2018;103:631–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Bajaj G, Wang X, Agrawal S, Gupta M, Roy A, Feng Y. Model-based population pharmacokinetic analysis of nivolumab in patients with solid tumors. CPT Pharmacometr Syst Pharmacol. 2017;6:58–66.

    CAS  Google Scholar 

  24. Agrawal S, Feng Y, Roy A, Kollia G, Lestini B. Nivolumab dose selection: challenges, opportunities, and lessons learned for cancer immunotherapy. J Immunother Cancer. 2016;4:72.

    PubMed  PubMed Central  Google Scholar 

  25. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti–programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Heery CR, O’Sullivan-Coyne G, Madan RA, Cordes L, Rajan A, Rauckhorst M, et al. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol. 2017;18:587–98.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Long GV, Tykodi SS, Schneider JG, Garbe C, Gravis G, Rashford M, et al. Assessment of nivolumab exposure and clinical safety of 480 mg every 4 weeks flat-dosing schedule in patients with cancer. Ann Oncol. 2018;29(11):2208–13. https://doi.org/10.1093/annonc/mdy408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang DD, Zhang S, Zhao H, Men AY, Parivar K. Fixed dosing versus body size-based dosing of monoclonal antibodies in adult clinical trials. J Clin Pharmacol. 2009;49:1012–24.

    PubMed  CAS  Google Scholar 

  29. Li J, Zhi J, Wenger M, Valente N, Dmoszynska A, Robak T, et al. Population pharmacokinetics of rituximab in patients with chronic lymphocytic leukemia. J Clin Pharmacol. 2012;52:1918–26.

    PubMed  CAS  Google Scholar 

  30. Dirks NL, Nolting A, Kovar A, Meibohm B. Population pharmacokinetics of cetuximab in patients with squamous cell carcinoma of the head and neck. J Clin Pharmacol. 2008;48:267–78.

    PubMed  CAS  Google Scholar 

  31. Bruno R, Washington CB, Lu J-F, Lieberman G, Banken L, Klein P. Population pharmacokinetics of trastuzumab in patients With HER2 + metastatic breast cancer. Cancer Chemother Pharmacol. 2005;56:361–9.

    PubMed  CAS  Google Scholar 

  32. Passot C, Azzopardi N, Renault S, Baroukh N, Arnoult C, Ohresser M, et al. Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies. mAbs. 2013;5:614–9.

    PubMed  PubMed Central  Google Scholar 

  33. Wilkins JJ, Brockhaus B, Dai H, Vugmeyster Y, White JT, Brar S, et al. Time-varying clearance and impact of disease state on the pharmacokinetics of avelumab in merkel cell carcinoma and urothelial carcinoma. CPT Pharmacometr Syst Pharmacol. 2019;8(6):415–27. https://doi.org/10.1002/psp4.12406.

    Article  CAS  Google Scholar 

  34. Li H, Yu J, Liu C, Liu J, Subramaniam S, Zhao H, et al. Time dependent pharmacokinetics of pembrolizumab in patients with solid tumor and its correlation with best overall response. J Pharmacokinet Pharmacodyn. 2017;44:403–14.

    PubMed  CAS  Google Scholar 

  35. Ogasawara K, Newhall K, Maxwell SE, Dell’Aringa J, Komashko V, Kilavuz N, et al. Population pharmacokinetics of an anti-PD-L1 antibody, durvalumab in patients with hematologic malignancies. Clin Pharmacokinet. 2019. https://doi.org/10.1007/s40262-019-00804-x(Epub 2019 Jul 22).

    Article  PubMed Central  Google Scholar 

  36. Leven C, Padelli M, Carré J-L, Bellissant E, Misery L. Immune checkpoint inhibitors in melanoma: a review of pharmacokinetics and exposure–response relationships. Clin Pharmacokinet. 2019. https://doi.org/10.1007/s40262-019-00789-7(Epub 2019 Jun 10).

    Article  PubMed  Google Scholar 

  37. Le Louedec F, Alix-Panabières C, Lafont T, Allal BC, Garrel R, Digue L, et al. Cetuximab pharmacokinetic/pharmacodynamics relationships in advanced head and neck carcinoma patients. Br J Clin Pharmacol. 2019;85:1357–66.

    PubMed  Google Scholar 

  38. Han K, Peyret T, Marchand M, Quartino A, Gosselin NH, Girish S, et al. Population pharmacokinetics of bevacizumab in cancer patients with external validation. Cancer Chemother Pharmacol. 2016;78:341–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Garg A, Quartino A, Li J, Jin J, Wada DR, Li H, et al. Population pharmacokinetic and covariate analysis of pertuzumab, a HER2-targeted monoclonal antibody, and evaluation of a fixed, non-weight-based dose in patients with a variety of solid tumors. Cancer Chemother Pharmacol. 2014;74:819–29.

    PubMed  CAS  Google Scholar 

  40. Turner DC, Kondic AG, Anderson KM, Robinson AG, Garon EB, Riess JW, et al. Pembrolizumab exposure–response assessments challenged by association of cancer cachexia and catabolic clearance. Clin Cancer Res. 2018;24:5841–9.

    PubMed  Google Scholar 

  41. Liu C, Yu J, Li H, Liu J, Xu Y, Song P, et al. Association of time-varying clearance of nivolumab with disease dynamics and its implications on exposure response analysis. Clin Pharmacol Ther. 2017;101:657–66.

    PubMed  CAS  Google Scholar 

  42. Bins S, Koolen SLW, Mathijssen RHJ. Pembrolizumab exposure–response assessments challenged by association of cancer cachexia and catabolic clearance—letter. Clin Cancer Res. 2019;25:3192–3192.

    PubMed  Google Scholar 

  43. Tardivon C, Desmée S, Kerioui M, Bruno R, Wu B, Mentré F, et al. Association between tumor size kinetics and survival in patients with urothelial carcinoma treated with atezolizumab: implication for patient follow-up. Clin Pharmacol Ther. 2019;106:810–20.

    PubMed  CAS  Google Scholar 

  44. Hertz DL, McLeod HL. Use of pharmacogenetics for predicting cancer prognosis and treatment exposure, response and toxicity. J Hum Genet. 2013;58:346–52.

    PubMed  CAS  Google Scholar 

  45. Refae S, Gal J, Brest P, Milano G. Germinal immunogenetics as a predictive factor for immunotherapy. Crit Rev Oncol Hematol. 2019;141:146–52. https://doi.org/10.1016/j.critrevonc.2019.06.013.

    Article  PubMed  Google Scholar 

  46. Refae S, Gal J, Ebran N, Otto J, Borchiellini D, Peyrade F, et al. Germinal immunogenetics predict treatment outcome for PD-1/PD-L1 checkpoint inhibitors. Invest New Drugs. 2019. https://doi.org/10.1007/s10637-019-00845-w(Epub 2019 Aug 11).

    Article  PubMed  Google Scholar 

  47. Iafolla MAJ, Selby H, Warner K, Ohashi PS, Haibe-Kains B, Siu LL. Rational design and identification of immuno-oncology drug combinations. Eur J Cancer. 2018;95:38–51.

    PubMed  CAS  Google Scholar 

  48. European Medecines Agency. YERVOY® (ipilimumab): summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/yervoy-epar-product-information_en.pdf. Accessed 22 Jul 2019.

  49. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD, et al. Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol. 2017;35:3851–8.

    PubMed  CAS  Google Scholar 

  51. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, et al. Safety and activity of anti–PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Weber JS, O’Day S, Urba W, Powderly J, Nichol G, Yellin M, et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol. 2008;26:5950–6.

    PubMed  CAS  Google Scholar 

  53. Rini BI, Plimack ER, Stus V, Gafanov R, Hawkins R, Nosov D, et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med. 2019;380:1116–27.

    PubMed  CAS  Google Scholar 

  54. Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: a non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 2018;19:405–15.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S, et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 2019;20:1083–97.

    PubMed  CAS  Google Scholar 

  56. Mitchell TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Olszanski AJ, et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase i results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J Clin Oncol. 2018. https://doi.org/10.1200/JCO.2018.78.9602(Epub 2018 Sep 28).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Coosemans A, Vankerckhoven A, Baert T, Boon L, Ruts H, Riva M, et al. Combining conventional therapy with immunotherapy: a risky business? Eur J Cancer. 2019;113:41–4.

    PubMed  CAS  Google Scholar 

  58. Morrissey KM, Marchand M, Patel H, Zhang R, Wu B, Phyllis Chan H, et al. Alternative dosing regimens for atezolizumab: an example of model-informed drug development in the postmarketing setting. Cancer Chemother Pharmacol. 2019. https://doi.org/10.1007/s00280-019-03954-8(Epub 2019 Sep 21).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lala M, Li M, Sinha V, de Alwis D, Chartash E, Jain L. A six-weekly (Q6 W) dosing schedule for pembrolizumab based on an exposure-response (E-R) evaluation using modeling and simulation. J Clin Oncol. 2018;36:3062–3062.

    Google Scholar 

  60. Ratain MJ, Goldstein DA. Time is money: optimizing the scheduling of nivolumab. J Clin Oncol. 2018;36:3074–6.

    Google Scholar 

  61. Goldstein DA, Ratain MJ. Alternative dosing regimens for atezolizumab: right dose, wrong frequency. Cancer Chemother Pharmacol. Epub. 2019. https://doi.org/10.1007/s00280-019-03971-7(Epub 2019 Oct 19).

    Article  Google Scholar 

  62. Feng Y, Masson E, Dai D, Parker SM, Berman D, Roy A. Model-based clinical pharmacology profiling of ipilimumab in patients with advanced melanoma: clinical pharmacology profiling of ipilimumab in advanced melanoma. Br J Clin Pharmacol. 2014;78:106–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Wang X, Feng Y, Bajaj G, Gupta M, Agrawal S, Yang A, et al. Quantitative characterization of the exposure-response relationship for cancer immunotherapy: a case study of nivolumab in patients with advanced melanoma. CPT Pharmacometr Syst Pharmacol. 2017;6:40–8.

    Google Scholar 

  64. Chatterjee M, Elassaiss-Schaap J, Lindauer A, Turner D, Sostelly A, Freshwater T, et al. Population pharmacokinetic/pharmacodynamic modeling of tumor size dynamics in pembrolizumab-treated advanced melanoma. CPT Pharmacometr Syst Pharmacol. 2017;6:29–39.

    CAS  Google Scholar 

  65. Center for Drug Evaluation and Research (CDER), US FDA. Clinical pharmacology and biopharmaceutics review(s): atezolizumab. Silver Springs: US FDA; 2016.

    Google Scholar 

  66. Center for Drug Evaluation and Research (CDER), US FDA. Clinical pharmacology and biopharmaceutics review(s): avelumab. Silver Springs: US FDA; 2017.

    Google Scholar 

  67. Jin C, Zheng Y, Jin X, Mukhopadhyay P, Gupta AK, Dennis PA, et al. Exposure-efficacy and safety analysis of durvalumab in patients with urothelial carcinoma (UC) and other solid tumors. J Clin Oncol. 2017;35:2568–2568.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Gail Taillefer, a native English-speaking medical writer (Professor emeritus of English), for her language and editorial support.

Funding

No funding was received that is directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Chatelut.

Ethics declarations

Conflict of interest

Etienne Chatelut, Félicien Le Louedec, and Gérard Milano declare that they have no conflict of interests related to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatelut, E., Le Louedec, F. & Milano, G. Setting the Dose of Checkpoint Inhibitors: The Role of Clinical Pharmacology. Clin Pharmacokinet 59, 287–296 (2020). https://doi.org/10.1007/s40262-019-00837-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-019-00837-2

Navigation