Skip to main content
Log in

Physiologically Based Pharmacokinetic Modeling for Trimethoprim and Sulfamethoxazole in Children

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective

The aims of this study were to (1) determine whether opportunistically collected data can be used to develop physiologically based pharmacokinetic (PBPK) models in pediatric patients; and (2) characterize age-related maturational changes in drug disposition for the renally eliminated and hepatically metabolized antibiotic trimethoprim (TMP)–sulfamethoxazole (SMX).

Methods

We developed separate population PBPK models for TMP and SMX in children after oral administration of the combined TMP–SMX product and used sparse and opportunistically collected plasma concentration samples to validate our pediatric model. We evaluated predictability of the pediatric PBPK model based on the number of observed pediatric data out of the 90% prediction interval. We performed dosing simulations to target organ and tissue (skin) concentrations greater than the methicillin-resistant Staphylococcus aureus (MRSA) minimum inhibitory concentration (TMP 2 mg/L; SMX 9.5 mg/L) for at least 50% of the dosing interval.

Results

We found 67–87% and 71–91% of the observed data for TMP and SMX, respectively, were captured within the 90% prediction interval across five age groups, suggesting adequate fit of our model. Our model-rederived optimal dosing of TMP at the target tissue was in the range of recommended dosing for TMP–SMX in children in all age groups by current guidelines for the treatment of MRSA.

Conclusion

We successfully developed a pediatric PBPK model of the combination antibiotic TMP–SMX using sparse and opportunistic pediatric pharmacokinetic samples. This novel and efficient approach has the potential to expand the use of PBPK modeling in pediatric drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  1. Alonso Campero R, Bernardo Escudero R, Del Cisne Valle Alvarez D, González de la Parra M, Namur Montalvo S, Burke Fraga V, et al. Bioequivalence of two commercial preparations of trimethoprim/sulfamethoxazole: a randomized, single-dose, single-blind, crossover trial. Clin Ther. 2007;29:326–33.

    PubMed  Google Scholar 

  2. Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58:265–78.

    PubMed  Google Scholar 

  3. Dahan A, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: provisional BCS classification of the world’s top oral drugs. AAPS J. 2009;11:740–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwartz DE, Zeigler WH. Assay and pharmacokinetics of trimethoprim in man and animals. Postgrad Med J. 1969;45:Supp 32–7.

    Google Scholar 

  5. Karpman E, Kurzrock EA. Adverse reactions of nitrofurantoin, trimethoprim and sulfamethoxazole in children. J Urol. 2004;172:448–53.

    CAS  PubMed  Google Scholar 

  6. Stevens RC, Laizure SC, Williams CL, Stein DS. Pharmacokinetics and adverse effects of 20-mg/kg/day trimethoprim and 100-mg/kg/day sulfamethoxazole in healthy adult subjects. Antimicrob Agents Chemother. 1991;35:1884–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Varoquaux O, Lajoie D, Gobert C, Cordonnier P, Ducreuzet C, Pays M, et al. Pharmacokinetics of the trimethoprim-sulfamethoxazole combination in the elderly. Br J Clin Phamarcol. 1985;20:575–81.

    CAS  Google Scholar 

  8. Chin TW, Vandenbroucke A, Fong IW. Pharmacokinetics of trimethoprim-sulfamethoxazole in critically ill and non-critically ill AIDS patients. Antimicrob Agents Chemother. 1995;39:28–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Walker SE, Paton TW, Churchill DN, Ojo B, Manuel MA, Wright N. Trimethoprim-sulfamethoxazole pharmacokinetics during continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int. 1989;9:51–5.

    CAS  PubMed  Google Scholar 

  10. Stevens RC, Laizure SC, Sanders PL, Stein DS. Multiple-dose pharmacokinetics of 12 milligrams of trimethoprim and 60 milligrams of sulfamethoxazole per kilogram of body weight per day in healthy volunteers. Antimicrob Agents Chemother. 1993;37:448–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. BACTRIM—sulfamethoxazole and trimethoprim tablet package insert. Philadelphia: AR Scientific, Inc; 2013.

  12. Yeldandi V, Strodtman R, Lentino J. In-vitro and in-vivo studies of trimethoprim-sulphamethoxazole against multiple resistant Staphylococcus aureus. J Antimicrob Chemother. 1988;22:873–80.

    CAS  PubMed  Google Scholar 

  13. Close S, McBurney CR, Garvin CG, Chen DC, Martin SJ. Trimethoprim-sulfamethoxazole activity and pharmacodynamics against glycopeptide-intermediate Staphylococcus aureus. Pharmacotherapy. 2002;22:983–9.

    CAS  PubMed  Google Scholar 

  14. Martinez M, Papich M, Drusano G. Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob Agents Chemother. 2012;56:2795–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilfert CM, Gutman LT. Pharmacokinetics of trimethoprim-sulfamethoxazole in children. Can Med Assoc J. 1975;112:73–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rylance GW, George RH, Healing DE, Roberts DG. Single dose pharmacokinetics of trimethoprim. Arch Dis Child. 1985;60:29–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Laughon MM, Benjamin DK Jr, Capparelli EV, Kearns GL, Berezny K, Paul IM, et al. Innovative clinical trial design for pediatric therapeutics. Expert Rev Clin Pharmacol. 2011;4:643–52.

    PubMed  PubMed Central  Google Scholar 

  18. Zimmerman K, Gonzalez D, Swamy GK, Cohen-Wolkowiez M. Pharmacologic studies in vulnerable populations: Using the pediatric experience. Semin Perinatol. 2015;39:532–6.

    PubMed  PubMed Central  Google Scholar 

  19. Kern SE. Challenges in conducting clinical trials in children: approaches for improving performance. Expert Rev Clin Pharmacol. 2009;2:609–17.

    PubMed  PubMed Central  Google Scholar 

  20. Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther. 2011;89:259–67.

    CAS  PubMed  Google Scholar 

  21. Maharaj AR, Edginton AN. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacomet Syst Pharmacol. 2014;3:e150.

    CAS  Google Scholar 

  22. Hornik CP, Wu H, Edginton AN, Watt K, Cohen-Wolkowiez M, Gonzalez D. Development of a pediatric physiologically-based pharmacokinetic model of clindamycin using opportunistic pharmacokinetic data. Clin Pharmacokinet. 2017;56:1343–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Maharaj AR, Barrett JS, Edginton AN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15:455–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Leong R, Vieira ML, Zhao P, Mulugeta Y, Lee CS, Huang SM, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91:926–31.

    CAS  PubMed  Google Scholar 

  25. Gonzalez D, Melloni C, Poindexter BB, Yogev R, Atz AM, Sullivan JE, et al. Simultaneous determination of trimethoprim and sulfamethoxazole in dried plasma and urine spots. Bioanalysis. 2015;7:1137–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95:1238–57.

    CAS  PubMed  Google Scholar 

  27. Rodgers T, Leahy D, Rowland M. Tissue distribution of basic drugs: accounting for enantiomeric, compound and regional differences amongst beta-blocking drugs in rat. J Pharm Sci. 2005;94:1237–48.

    CAS  PubMed  Google Scholar 

  28. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94:1259–76.

    CAS  PubMed  Google Scholar 

  29. Ribera E, Pou L, Fernandez-Sola A, Campos F, Lopez RM, Ocaña I, et al. Rifampin reduces concentrations of trimethoprim and sulfamethoxazole in serum in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2001;45:3238–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cribb A, Spielberg S, Griffin G. N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P450C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes. Drug Metab Dispos. 1995;23:406–14.

    CAS  PubMed  Google Scholar 

  31. Kagaya H, Miura M, Niioka T, Saito M, Numakura K, Habuchi T, et al. Influence of NAT2 polymorphisms on sulfamethoxazole pharmacokinetics in renal transplant recipients. Antimicrob Agents Chemother. 2012;56:825–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McDonagh EM, Boukouvala S, Aklillu E, Hein DW, Altman RB, Klein TE. PharmGKB summary: very important pharacogene information for N-acetyltransferase 2. Pharmacogenet Genom. 2014;24:409–25.

    CAS  Google Scholar 

  33. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–82.

    CAS  PubMed  Google Scholar 

  34. Dudley MN, Levitz RE, Quintiliani R, Hickingbotham JM, Nightingale CH. Pharmacokinetics of trimethoprim and sulfamethoxazole in serum and cerebrospinal fluid of adult patients with normal meninges. Antimicrob Agents Chemother. 1984;26:811–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaplan SA, Weinfeld RE, Abruzzo CW, McFaden K, Jack ML, Weissman L. Pharmacokinetic profile of trimethoprim-sulfamethoxazole in man. J Infect Dis. 1973;128(Suppl):547–55.

    Google Scholar 

  36. Medina JR, Miranda M, Hurtado M, Dominguez-Ramirez AM, Ruiz-Segura JC. Simultaneous determination of trimethoprim and sulfamethoxazole in immediate-release oral dosage forms by first-order derivative spectroscopy: application to dissolution studies. Int J Pharm Pharm Sci. 2013;5:505–10.

    CAS  Google Scholar 

  37. Paixao P, Gouveia L, Morais J. Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. Eur J Pharm Sci. 2010;41:107–17.

    CAS  PubMed  Google Scholar 

  38. Hayton WL. Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci. 2000;2:E3.

    CAS  PubMed  Google Scholar 

  39. Achour B, Barber J, Rostami-Hodjegan A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: a meta-analysis. Drug Metab Dispos. 2014;42:1349–56.

    PubMed  Google Scholar 

  40. Weber W, Vatsis K. Individual variability in p-aminobenzoic acid N-acetylation by human N-acetyltransferase (NAT1) of peripheral blood. Pharmacogenetics. 1993;3:209–12.

    CAS  PubMed  Google Scholar 

  41. Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45:1013–34.

    CAS  PubMed  Google Scholar 

  42. Willmann S, Höhn K, Edginton A, Sevestre M, Solodenko J, Weiss W, et al. Development of a physiologically-based whole-body population model for assessing the influence of individual variability on the pharmacokinetics of drugs. J Pharmacokinet Pharmacodyn. 2007;34:401–31.

    PubMed  Google Scholar 

  43. Deng F, Dong C, Liu Y, Yu Y. Study on the interaction between trimethoprim and human serum albumin by spectroscopic and molecular modeling methods. Spectrosc Lett. 2013;46:13–20.

    CAS  Google Scholar 

  44. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45:683–704.

    CAS  PubMed  Google Scholar 

  45. Willmann S, Lippet J, Sevestre M, Solodenko, Fois F, Schmitt W. PK-Sim®: a physiologically based pharmacokinetic ‘whole-body’ model. Biosilico. 2003;1:121-4.

  46. Autmizguine J, Melloni C, Hornik CP, Dallefeld S, Harper B, Yogev R, et al. Population pharmacokinetics of trimethoprim-sulfamethoxazole in infants and children. Antimicrob Agents Chemother. 2018;62:e01813–7.

    PubMed  Google Scholar 

  47. ACS Demographic and Housing Estimates—2011–2015 American Community Survey 5-year estimates. U.S. Census Bureau. https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml. Accessed 5 Sept 2018.

  48. Kremers P, Duvivier J, Heusghem C. Pharmacokinetic studies of co-trimoxazole in man after single and repeated doses. J Clin Pharmacol. 1974;14:112–7.

    CAS  PubMed  Google Scholar 

  49. Cenizal MJ, Skiest D, Luber S, Bedimo R, Davis P, Fox P, et al. Prospective randomized trial of empiric therapy with trimethoprim-sulfamethoxazole or doxycycline for outpatient skin and soft tissue infections in an area of high prevalence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51:2628–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mendes RE, Moet GJ, Janechek MJ, Jones RN. In vitro activity of telavancin against a contemporary worldwide collection of Staphylococcus aureus isolates. Antimicrob Agents Chemother. 2010;54:2704–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Thomson KS, Goering RV. Activity of tedizolid (TR-700) against well-characterized methicillin-resistant Staphylococcus aureus straings of diverse epidemiological origins. Antimicrob Agents Chemother. 2013;57:2892–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Craig WA. Interrelationship between pharmacokinetics and pharmacodynamics in determining dosage regimens for broad-spectrum cephalosporins. Diagn Microbiol Infect Dis. 1995;22:89–96.

    CAS  PubMed  Google Scholar 

  53. Siber GR, Gorham CC, Ericson JF, Smith AL. Pharmacokinetics of intravenous trimethoprim-sulfamethoxazole in children and adults with normal and impaired renal function. Rev Infect Dis. 1982;4:566–78.

    CAS  PubMed  Google Scholar 

  54. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–67.

    CAS  PubMed  Google Scholar 

  55. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 2011;52:285–92.

    PubMed  Google Scholar 

  56. Yamaori S, Yamazaki H, Iwano S, Kiyotani K, Matsumura K, Saito T, et al. Ethnic differences between Japanese and Caucasians in the expression levels of mRNAs for CYP3A4, CYP3A5, and CYP3A7: lack of co-regulation of the expression of CYP3A in Japanese livers. Xenobiotica. 2005;35:69–83.

    CAS  PubMed  Google Scholar 

  57. Benjamin D. Pharmacokinetics of understudied drugs administered to children per standard of care (PTN_POPS) [ClinicalTrials.gov identifier NCT01431326]. US National Institutes of Health, ClinicalTrials.gov. https://clinicaltrials.gov. Accessed 23 Dec 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Cohen-Wolkowiez.

Ethics declarations

Funding

This work was funded by the National Institutes of Health (1R01-HD076676-01A1; M.C.W.). Funding acknowledgements: NIGMS/NICHD (National Institute of General Medical Sciences/National Institute of Child Health and Human Development) 2T32GM086330-06; Clinical and Translational Science Awards (CTSA).

Conflict of interest

Stephen J. Balevic receives salary and research support from the National Institutes of Health (5R01-HD076676-04, HHSN275201000003I, the Rheumatology Research Foundation’s Scientist Development Award, and the Thrasher Research Fund. Andrea N. Edginton receives support for research from the National Institutes of Health (1R01-HD076676-01A1 [PI: Cohen-Wolkowiez]). Elizabeth J. Thompson, Huali Wu, Anil Maharaj, Marjan Cobbaert, Anthony P. Cunningham, Christoph P. Hornik, and Michael Cohen-Wolkowiez have nothing to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, E.J., Wu, H., Maharaj, A. et al. Physiologically Based Pharmacokinetic Modeling for Trimethoprim and Sulfamethoxazole in Children. Clin Pharmacokinet 58, 887–898 (2019). https://doi.org/10.1007/s40262-018-00733-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-018-00733-1

Navigation