Skip to main content
Log in

Pharmacokinetic Evaluations of the Co-Administrations of Vandetanib and Metformin, Digoxin, Midazolam, Omeprazole or Ranitidine

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

An Erratum to this article was published on 26 September 2014

Abstract

Background and Objective

Vandetanib is a selective inhibitor of vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET) signalling, indicated for the treatment of medullary thyroid cancer. We investigated potential drug–drug interactions between vandetanib and metformin [organic cation transporter 2 (OCT2) substrate; NCT01551615]; digoxin [P-glycoprotein (P-gp) substrate; NCT01561781]; midazolam [cytochrome P450 (CYP) 3A4 substrate; NCT01544140]; omeprazole (proton pump inhibitor) or ranitidine (histamine H2-receptor antagonist; both NCT01539655).

Methods

Four open-label, phase I studies were conducted in healthy volunteers: n = 14 (metformin), n = 14 (digoxin), n = 17 (midazolam), n = 16 (omeprazole), n = 18 (ranitidine). Three of these comprised the following regimens: metformin 1000 mg ± vandetanib 800 mg, midazolam 7.5 mg ± vandetanib 800 mg, or digoxin 0.25 mg ± vandetanib 300 mg. The randomized study comprised vandetanib 300 mg alone and then either (i) omeprazole 40 mg (days 1–4), and omeprazole + vandetanib (day 5); or (ii) ranitidine 150 mg (day 1), and ranitidine + vandetanib (day 2). The primary objective assessed metformin, digoxin, midazolam and vandetanib pharmacokinetics.

Results

Vandetanib + metformin increased metformin area under the plasma concentration–time curve from zero to infinity (AUC0–∞) and maximum observed plasma concentration (Cmax) by 74 and 50 %, respectively, and decreased the geometric mean metformin renal clearance (CLR) by 52 % versus metformin alone. Vandetanib + digoxin increased digoxin area under the concentration-time curve from zero to the last quantifiable concentration (AUC0–last) and Cmax by 23 and 29 %, respectively, versus digoxin alone, with only a 9 % decrease in CLR. Vandetanib had no effect on midazolam exposure. Vandetanib exposure was unchanged during co-administration with omeprazole/ranitidine. Treatment combinations were generally well tolerated.

Conclusion

Patients receiving vandetanib with metformin/digoxin may require additional monitoring of metformin/digoxin, with dose adjustments where necessary. Vandetanib with CYP3A4 substrates or omeprazole/ranitidine is unlikely to result in clinically relevant drug–drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wedge SR, Ogilvie DJ, Dukes M, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002;62:4645–55.

    PubMed  CAS  Google Scholar 

  2. Carlomagno F, Vitagliano D, Guida T, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62:7284–90.

    PubMed  CAS  Google Scholar 

  3. Ciardiello F, Caputo R, Damiano V, et al. Antitumor effects of ZD6474, a small molecule vascular endothelial growth factor receptor tyrosine kinase inhibitor, with additional activity against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res. 2003;9:1546–56.

    PubMed  CAS  Google Scholar 

  4. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.

    Article  PubMed  CAS  Google Scholar 

  5. Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res. 2006;12:5018–22.

    Article  PubMed  CAS  Google Scholar 

  6. Wells A. EGF receptor. Int J Biochem Cell Biol. 1999;31:637–43.

    Article  PubMed  CAS  Google Scholar 

  7. Thornton K, Kim G, Maher VE, et al. Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease: U.S. Food and Drug Administration drug approval summary. Clin Cancer Res. 2012;18:3722–30.

    Article  PubMed  CAS  Google Scholar 

  8. Martin P, Oliver S, Kennedy SJ, et al. Pharmacokinetics of vandetanib: three phase I studies in healthy subjects. Clin Ther. 2012;34:221–37.

    Article  PubMed  CAS  Google Scholar 

  9. Martin P, Oliver S, Robertson J, et al. Pharmacokinetic drug interactions with vandetanib during coadministration with rifampicin or itraconazole. Drugs R D. 2011;11:37–51.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Weil A, Martin P, Smith R, et al. Pharmacokinetics of vandetanib in subjects with renal or hepatic impairment. Clin Pharmacokinet. 2010;49:607–18.

    Article  PubMed  CAS  Google Scholar 

  11. Estudante M, Morais JG, Soveral G, et al. Intestinal drug transporters: an overview. Adv Drug Deliv Rev. 2013;65:1340–56.

    Article  PubMed  CAS  Google Scholar 

  12. Wang ZJ, Yin OQ, Tomlinson B, et al. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18:637–45.

    Article  PubMed  CAS  Google Scholar 

  13. AstraZeneca. Global policy: Bioethics. 2011. Available from: http://www.astrazeneca.com/Responsibility/Code-policies-standards/Our-global-policies.

  14. Hedenstrom H, Alm C, Kraft M, et al. Intragastric pH after oral administration of single doses of ranitidine effervescent tablets, omeprazole capsules and famotidine fast-dissolving tablets to fasting healthy volunteers. Aliment Pharmacol Ther. 1997;11:1137–41.

    Article  PubMed  CAS  Google Scholar 

  15. Somogyi A, Stockley C, Keal J, et al. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol. 1987;23:545–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Pentikainen PJ, Neuvonen PJ, Penttila A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol. 1979;16:195–202.

    Article  PubMed  CAS  Google Scholar 

  17. Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50:81–98.

    Article  PubMed  CAS  Google Scholar 

  18. Motohashi H, Inui K. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J. 2013;15:581–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Kusuhara H, Ito S, Kumagai Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89:837–44.

    Article  PubMed  CAS  Google Scholar 

  20. Holden SN, Eckhardt SG, Basser R, et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol. 2005;16:1391–7.

    Article  PubMed  CAS  Google Scholar 

  21. Tamura T, Minami H, Yamada Y, et al. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J Thorac Oncol. 2006;1:1002–9.

    Article  PubMed  Google Scholar 

  22. Shen H, Yang Z, Zhao W, et al. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion (MATE1 and MATE2K) as a possible mechanism leading to decreased cisplatin and creatinine clearance. Drug Metab Dispos. 2013;41:2095–103.

    Article  PubMed  CAS  Google Scholar 

  23. Morris SA, Hatcher HF, Reddy DK. Digoxin therapy for heart failure: an update. Am Fam Physician. 2006;74:613–8.

    PubMed  Google Scholar 

  24. Siepmann M, Kleinbloesem C, Kirch W. The interaction of the calcium antagonist RO 40-5967 with digoxin. Br J Clin Pharmacol. 1995;39:491–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

These studies were sponsored by AstraZeneca. Claire Routley, PhD, from Mudskipper Business Ltd, provided medical writing support, funded by AstraZeneca.

Susanne Johansson, Jessica Read, Stuart Oliver, Mark Steinberg, Yan Li, and Paul Martin are employees of AstraZeneca; Eleanor Lisbon, David Mathews and Philip T. Leese declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Johansson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansson, S., Read, J., Oliver, S. et al. Pharmacokinetic Evaluations of the Co-Administrations of Vandetanib and Metformin, Digoxin, Midazolam, Omeprazole or Ranitidine. Clin Pharmacokinet 53, 837–847 (2014). https://doi.org/10.1007/s40262-014-0161-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0161-2

Keywords

Navigation