Skip to main content
Log in

Sex Differences in the Pharmacokinetics of Antidepressants: Influence of Female Sex Hormones and Oral Contraceptives

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Women are twice as likely to develop depression as men. Moreover, the symptoms they experience also show sex differences: women tend to develop depression at an earlier age and show more severe symptoms than men. Likewise, the response to antidepressant pharmacotherapy appears to have sex differences. These differences can partially be explained by differences in pharmacokinetic properties (i.e., absorption, distribution, metabolism, and excretion) of drugs in males and females. More recent research has shown that sex hormones may influence all these previously named pharmacokinetic processes. As concentrations of sex hormones vary throughout the female lifespan, these hormonal variations can have effects on therapeutic responses to antidepressants as well as the occurrence of adverse events. The purpose of this paper is therefore to review the literature reporting on the effects of female sex hormones on the pharmacokinetics of antidepressants and to discuss and evaluate the implications of changes in levels of sex hormones throughout life for the treatment of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. WHO depression fact sheet. http://www.who.int/mediacentre/factsheets/fs369/en/index.html. Accessed 23 May 2013

  2. Association AP. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994.

  3. Dimock K, McGrath S, Cook L. The nervous system: antidepressant drugs. In: Rang HP, Dale MM, Ritter JM, Flower RJ, editors. Rang and Dale’s pharmacology. 6th ed. Oxford: Elsevier, Ltd; 2007. pp. 557–73.

  4. Fernandez-Guasti A, Fiedler JL, Herrera L, Handa RJ. Sex, stress, and mood disorders: at the intersection of adrenal and gonadal hormones. Horm Metab Res. 2012;44:607–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Brigitta B. Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci. 2002;4:7–20.

    PubMed Central  PubMed  Google Scholar 

  6. Angst J, Gamma A, Gastpar M, Lepine JP, Mendlewicz J, Tylee A, et al. Gender differences in depression. Epidemiological findings from the European DEPRES I and II studies. Eur Arch Psychiatry Clin Neurosci. 2002;252:201–9.

    CAS  PubMed  Google Scholar 

  7. Frackiewicz EJ, Sramek JJ, Cutler NR. Gender differences in depression and antidepressant pharmacokinetics and adverse events. Ann Pharmacother. 2000;34:80–8.

    CAS  PubMed  Google Scholar 

  8. Grigoriadis S, Robinson GE. Gender issues in depression. Ann Clin Psychiatry. 2007;19:247–55.

    PubMed  Google Scholar 

  9. Pae CU, Mandelli L, Kim TS, Han C, Masand PS, Marks DM, et al. Effectiveness of antidepressant treatments in pre-menopausal versus post-menopausal women: a pilot study on differential effects of sex hormones on antidepressant effects. Biomed Pharmacother. 2009;63:228–35.

    CAS  PubMed  Google Scholar 

  10. Freeman EW, Sammel MD, Liu L, Gracia CR, Nelson DB, Hollander L. Hormones and menopausal status as predictors of depression in women in transition to menopause. Arch Gen Psychiatry. 2004;61:62–70.

    CAS  PubMed  Google Scholar 

  11. Freeman EW. Associations of depression with the transition to menopause. Menopause. 2010;17:823–7.

    PubMed  Google Scholar 

  12. Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry. 1999;156:837–41.

    CAS  PubMed  Google Scholar 

  13. Keers R, Aitchison KJ. Gender differences in antidepressant drug response. Int Rev Psychiatry. 2010;22:485–500.

    PubMed  Google Scholar 

  14. Ormel J, Jeronimus BF, Kotov R, Riese H, Bos EH, Hankin B, et al. Neuroticism and common mental disorders: meaning and utility of a complex relationship. Clin Psychol Rev. 2013;33:686–97.

    PubMed  Google Scholar 

  15. Kendler KS, Gardner CO. Sex differences in the pathways to major depression: a study of opposite-sex twin pairs. Am J Psychiatry. 2014;171:426–35.

    PubMed  Google Scholar 

  16. Khan A, Brodhead AE, Schwartz KA, Kolts RL, Brown WA. Sex differences in antidepressant response in recent antidepressant clinical trials. J Clin Psychopharmacol. 2005;25:318–24.

    PubMed  Google Scholar 

  17. Young EA, Kornstein SG, Marcus SM, Harvey AT, Warden D, Wisniewski SR, et al. Sex differences in response to citalopram: a STAR*D report. J Psychiatr Res. 2009;43:503–11.

    PubMed Central  PubMed  Google Scholar 

  18. Baca E, Garcia-Garcia M, Porras-Chavarino A. Gender differences in treatment response to sertraline versus imipramine in patients with nonmelancholic depressive disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:57–65.

    CAS  PubMed  Google Scholar 

  19. Pomara N, Shao B, Choi SJ, Tun H, Suckow RF. Sex-related differences in nortriptyline-induced side-effects among depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:1035–48.

    CAS  PubMed  Google Scholar 

  20. Kornstein SG, Schatzberg AF, Thase ME, Yonkers KA, McCullough JP, Keitner GI, et al. Gender differences in treatment response to sertraline versus imipramine in chronic depression. Am J Psychiatry. 2000;157:1445–52.

    CAS  PubMed  Google Scholar 

  21. Joyce PR, Mulder RT, Luty SE, Sullivan PF, McKenzie JM, Abbott RM, et al. Patterns and predictors of remission, response and recovery in major depression treated with fluoxetine or nortriptyline. Aust N Z J Psychiatry. 2002;36:384–91.

    PubMed  Google Scholar 

  22. Naito S, Sato K, Yoshida K, Higuchi H, Takahashi H, Kamata M, et al. Gender differences in the clinical effects of fluvoxamine and milnacipran in Japanese major depressive patients. Psychiatry Clin Neurosci. 2007;61:421–7.

    CAS  PubMed  Google Scholar 

  23. Berlanga C, Flores-Ramos M. Different gender response to serotonergic and noradrenergic antidepressants. A comparative study of the efficacy of citalopram and reboxetine. J Affect Disord. 2006;95:119–23.

    CAS  PubMed  Google Scholar 

  24. Thase ME, Entsuah R, Cantillon M, Kornstein SG. Relative antidepressant efficacy of venlafaxine and SSRIs: sex–age interactions. J Womens Health (Larchmt). 2005;14:609–16.

    Google Scholar 

  25. Martenyi F, Dossenbach M, Mraz K, Metcalfe S. Gender differences in the efficacy of fluoxetine and maprotiline in depressed patients: a double-blind trial of antidepressants with serotonergic or norepinephrinergic reuptake inhibition profile. Eur Neuropsychopharmacol. 2001;11:227–32.

    CAS  PubMed  Google Scholar 

  26. Papakostas GI, Kornstein SG, Clayton AH, Soares CN, Hallett LA, Krishen A, et al. Relative antidepressant efficacy of bupropion and the selective serotonin reuptake inhibitors in major depressive disorder: gender–age interactions. Int Clin Psychopharmacol. 2007;22:226–9.

    PubMed  Google Scholar 

  27. Wohlfarth T, Storosum JG, Elferink AJA, van Zwieten BJ, Fouwels A, van den Brink W. Response to tricyclic antidepressants: independent of gender? Am J Psychiatry. 2004;161:370–2.

    PubMed  Google Scholar 

  28. Parker G, Parker K, Austin MP, Mitchell P, Brotchie H. Gender differences in response to differing antidepressant drug classes: two negative studies. Psychol Med. 1999;33:1473–7.

    Google Scholar 

  29. Hildebrandt MG, Steyerberg EW, Stage KB, Passchier J, Kragh-Soerensen P. Danish University Antidepressant Group. Are gender differences important for the clinical effects of antidepressants? Am J Psychiatry. 2003;160:1643–50.

    PubMed  Google Scholar 

  30. Quitkin FM, Stewart JW, McGrath PJ, Taylor BP, Tisminetzky MS, Petkova E, et al. Are there differences between women’s and men’s antidepressant responses? Am J Psychiatry. 2002;159:1848–54.

    PubMed  Google Scholar 

  31. Kornstein SG. Gender differences in depression: implications for treatment. J Clin Psychiatry. 1997;58(Suppl 15):12–8.

    PubMed  Google Scholar 

  32. Sloan DM, Kornstein SG. Gender differences in depression and response to antidepressant treatment. Psychiatr Clin N Am. 2003;26:581–94.

    Google Scholar 

  33. Marcus SM, Young EA, Kerber KB, Kornstein S, Farabaugh AH, Mitchell J, et al. Gender differences in depression: findings from the STAR*D study. J Affect Disord. 2005;87:141–50.

    PubMed  Google Scholar 

  34. Kokras N, Dalla C, Papadopoulou-Daifoti Z. Sex differences in pharmacokinetics of antidepressants. Expert Opin Drug Metab Toxicol. 2011;7:213–26.

    PubMed  Google Scholar 

  35. Gex-Fabry M, Balant-Gorgia AE, Balant LP, Garrone G. Clomipramine metabolism. Model-based analysis of variability factors from drug monitoring data. Clin Pharmacokinet. 1990;19:241–55.

    CAS  PubMed  Google Scholar 

  36. Ronfeld RA, Tremaine LM, Wilner KD. Pharmacokinetics of sertraline and its N-demethyl metabolite in elderly and young male and female volunteers. Clin Pharmacokinet. 1997;32(Suppl 1):22–30.

    CAS  PubMed  Google Scholar 

  37. Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors. An overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet. 1997;32(Suppl 1):1–21.

    CAS  PubMed  Google Scholar 

  38. Morishita S, Kinoshita T. Predictors of response to sertraline in patients with major depression. Hum Psychopharmacol. 2008;23:647–51.

    CAS  PubMed  Google Scholar 

  39. Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2009;48:143–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Kashuba AD, Nafziger AN. Physiological changes during the menstrual cycle and their effects on the pharmacokinetics and pharmacodynamics of drugs. Clin Pharmacokinet. 1998;34:203–18.

    CAS  PubMed  Google Scholar 

  41. Berg MJ. Gender-specific prescribing: medications and the menstrual cycle. J Gend Specif Med. 1998;1:17–9.

    CAS  PubMed  Google Scholar 

  42. Haus E, Nicolau GY, Lakatua DJ, Sackett-Lundeen L, Petrescu E, Swoyer J. Chronobiology in laboratory medicine. Ann Ist Super Sanita. 1993;29:581–606.

    CAS  PubMed  Google Scholar 

  43. Grossman MI, Kirsner JB, Gillespie IE. Basal and histalog-stimulated gastric secretion in control subjects and in patients with peptic ulcer or gastric cancer. Gastroenterology. 1963;45:14–26.

    CAS  PubMed  Google Scholar 

  44. Wald A, Van Thiel DH, Hoechstetter L, Gavaler JS, Egler KM, Verm R, et al. Gastrointestinal transit: the effect of the menstrual cycle. Gastroenterology. 1981;80:1497–500.

    CAS  PubMed  Google Scholar 

  45. Horowitz M, Maddern GJ, Chatterton BE, Collins PJ, Petrucco OM, Seamark R, et al. The normal menstrual cycle has no effect on gastric emptying. Br J Obstet Gynaecol. 1985;92:743–6.

    CAS  PubMed  Google Scholar 

  46. Jones BM, Jones MK. Alcohol effects in women during the menstrual cycle. Ann N Y Acad Sci. 1976;273:576–87.

    CAS  PubMed  Google Scholar 

  47. Mones J, Carrio I, Calabuig R, Estorch M, Sainz S, Berna L, et al. Influence of the menstrual cycle and of menopause on the gastric emptying rate of solids in female volunteers. Eur J Nucl Med. 1993;20:600–2.

    CAS  PubMed  Google Scholar 

  48. Hsu JJ, Kim CH, O’Connor MK, Brown ML. Effect of menstrual cycle on esophageal emptying of liquid and solid boluses. Mayo Clin Proc. 1993;68:753–6.

    CAS  PubMed  Google Scholar 

  49. Yonkers KA, Kando JC, Cole JO, Blumenthal S. Gender differences in pharmacokinetics and pharmacodynamics of psychotropic medication. Am J Psychiatry. 1992;149:587–95.

    CAS  PubMed  Google Scholar 

  50. Nicolas JM, Espie P, Molimard M. Gender and interindividual variability in pharmacokinetics. Drug Metab Rev. 2009;41:408–21.

    CAS  PubMed  Google Scholar 

  51. Bisdee JT, Garlick PJ, James WP. Metabolic changes during the menstrual cycle. Br J Nutr. 1989;61:641–50.

    CAS  PubMed  Google Scholar 

  52. Gleichauf CN, Roe DA. The menstrual cycle’s effect on the reliability of bioimpedance measurements for assessing body composition. Am J Clin Nutr. 1989;50:903–7.

    CAS  PubMed  Google Scholar 

  53. Fruzzetti F, Lello S, Lazzarini V, Fratta S, Orru M, Sorge R, et al. The oral contraceptive containing 30 microg of ethinylestradiol plus 3 mg of drospirenone is able to antagonize the increase of extracellular water occurring in healthy young women during the luteal phase of the menstrual cycle: an observational study. Contraception. 2007;75:199–203.

    CAS  PubMed  Google Scholar 

  54. Jochemsen R, van der Graaff M, Boeijinga JK, Breimer DD. Influence of sex, menstrual cycle and oral contraception on the disposition of nitrazepam. Br J Clin Pharmacol. 1982;13:319–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Shavit G, Lerman P, Korczyn AD, Kivity S, Bechar M, Gitter S. Phenytoin pharmacokinetics in catamenial epilepsy. Neurology. 1984;34:959–61.

    CAS  PubMed  Google Scholar 

  56. Cederblad G, Hahn L, Korsan-Bengtsen K, Pehrsson NG, Rybo G. Variations in blood coagulation, fibrinolysis, platelet function and various plasma proteins during the menstrual cycle. Haemostasis. 1977;6:294–302.

    CAS  PubMed  Google Scholar 

  57. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacokinet Ther. 2002;71:115–21.

    CAS  Google Scholar 

  58. Schmidt S, Gonzalez D, Derendorf H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J Pharm Sci. 2010;99:1107–22.

    CAS  PubMed  Google Scholar 

  59. Bigos KL, Pollock BG, Stankevich BA, Bies RR. Sex differences in the pharmacokinetics and pharmacodynamics of antidepressants: an updated review. Gend Med. 2009;6:522–43.

    PubMed  Google Scholar 

  60. Abernethy DR, Greenblatt DJ, Shader RI. Imipramine disposition in users of oral contraceptive steroids. Clin Pharmacol Ther. 1984;35:792–7.

    CAS  PubMed  Google Scholar 

  61. Higashi E, Fukami T, Itoh M, Kyo S, Inoue M, Yokoi T, et al. Human CYP2A6 is induced by estrogen via estrogen receptor. Drug Metab Dispos. 2007;35:1935–41.

    CAS  PubMed  Google Scholar 

  62. Dickmann LJ, Isoherranen N. Quantitative prediction of CYP2B6 induction by estradiol during pregnancy: potential explanation for increased methadone clearance during pregnancy. Drug Metab Dispos. 2013;41:270–4.

    CAS  PubMed  Google Scholar 

  63. Palovaara S, Pelkonen O, Uusitalo J, Lundgren S, Laine K. Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin Pharmacol Ther. 2003;74:326–33.

    CAS  PubMed  Google Scholar 

  64. Thompson DS, Kirshner MA, Klug TL, Kastango KB, Pollock BG. A preliminary study of the effect of fluoxetine treatment on the 2:16-alpha-hydroxyestrone ratio in young women. Ther Drug Monit. 2003;25:125–8.

    CAS  PubMed  Google Scholar 

  65. Soldin OP, Chung SH, Mattison DR. Sex differences in drug disposition. J Biomed Biotechnol. 2011;2011:187103.

  66. DelRosario GA, Chang AC, Lee ED. Postpartum depression: symptoms, diagnosis, and treatment approaches. JAAPA. 2013;26:50–4.

    PubMed  Google Scholar 

  67. Parker G, Brotchie H. Gender differences in depression. Int Rev Psychiatry. 2010;22:429–36.

    PubMed  Google Scholar 

  68. Hazell P, Mirzaie M. Tricyclic drugs for depression in children and adolescents. Cochrane Database Syst Rev. 2013;6:CD002317.

    PubMed  Google Scholar 

  69. Steer RA, Scholl TO, Hediger ML, Fischer RL. Self-reported depression and negative pregnancy outcomes. J Clin Epidemiol. 1992;45:1093–9.

    CAS  PubMed  Google Scholar 

  70. Deligiannidis KM, Byatt N, Freeman MP. Pharmacotherapy for mood disorders in pregnancy: a review of pharmacokinetic changes and clinical recommendations for therapeutic drug monitoring. J Clin Psychopharmacol. 2014;34:244–55.

    CAS  PubMed  Google Scholar 

  71. Aldridge A, Bailey J, Neims AH. The disposition of caffeine during and after pregnancy. Semin Perinatol. 1981;5:310–4.

    CAS  PubMed  Google Scholar 

  72. Wisner KL, Perel JM, Wheeler SB. Tricyclic dose requirements across pregnancy. Am J Psychiatry. 1993;150:1541–2.

    CAS  PubMed  Google Scholar 

  73. Abernethy DR, Todd EL. Impairment of caffeine clearance by chronic use of low-dose oestrogen-containing oral contraceptives. Eur J Clin Pharmacol. 1985;28:425–8.

    CAS  PubMed  Google Scholar 

  74. Baylis F. Pregnant women deserve better. Nature. 2010;465:689–90.

    CAS  PubMed  Google Scholar 

  75. Utian WH. The International Menopause Society menopause-related terminology definitions. Climacteric. 1999;2:284–6.

    CAS  PubMed  Google Scholar 

  76. Cohen LS. Gender-specific considerations in the treatment of mood disorders in women across the life cycle. J Clin Psychiatry. 2003;64(Suppl 15):18–29.

    PubMed  Google Scholar 

  77. Oesterheld JR, Cozza K, Sandson NB. Oral contraceptives. Psychosomatics. 2008;49:168–75.

    CAS  PubMed  Google Scholar 

  78. Zhang H, Cui D, Wang B, Han YH, Balimane P, Yang Z, et al. Pharmacokinetic drug interactions involving 17alpha-ethinylestradiol: a new look at an old drug. Clin Pharmacokinet. 2007;46:133–57.

    CAS  PubMed  Google Scholar 

  79. Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob P 3rd. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther. 2006;79:480–8.

    CAS  PubMed  Google Scholar 

  80. Miners JO, Robson RA, Birkett DJ. Gender and oral contraceptive steroids as determinants of drug glucuronidation: effects on clofibric acid elimination. Br J Clin Pharmacol. 1984;18:240–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Walle T, Fagan TC, Walle UK, Topmiller MJ. Stimulatory as well as inhibitory effects of ethinyloestradiol on the metabolic clearances of propranolol in young women. Br J Clin Pharmacol. 1996;41:305–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Monig H, Baese C, Heidemann HT, Ohnhaus EE, Schulte HM. Effect of oral contraceptive steroids on the pharmacokinetics of phenprocoumon. Br J Clin Pharmacol. 1990;30:115–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Herman RJ, Loewen GR, Antosh DM, Taillon MR, Hussein S, Verbeeck RK. Analysis of polymorphic variation in drug metabolism: III. Glucuronidation and sulfation of diflunisal in man. Clin Invest Med. 1994;17:297–307.

    CAS  PubMed  Google Scholar 

  84. Sabers A, Buchholt JM, Uldall P, Hansen EL. Lamotrigine plasma levels reduced by oral contraceptives. Epilepsy Res. 2001;47:151–4.

    CAS  PubMed  Google Scholar 

  85. Gu L, Gonzalez FJ, Kalow W, Tang BK. Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics. 1992;2:73–7.

    CAS  PubMed  Google Scholar 

  86. Roberts RK, Grice J, McGuffie C, Heilbronn L. Oral contraceptive steroids impair the elimination of theophylline. J Lab Clin Med. 1983;101:821–5.

    CAS  PubMed  Google Scholar 

  87. Zhang ZY, Kaminsky LS. Characterization of human cytochromes P450 involved in theophylline 8-hydroxylation. Biochem Pharmacol. 1995;50:205–11.

    CAS  PubMed  Google Scholar 

  88. Somani SM, Khurana RC. Mechanism of estrogen-imipramine interaction. JAMA. 1973;223:560.

    CAS  PubMed  Google Scholar 

  89. Koke SC, Brown EB, Miner CM. Safety and efficacy of fluoxetine in patients who receive oral contraceptive therapy. Am J Obstet Gynecol. 2002;187:551–5.

    CAS  PubMed  Google Scholar 

  90. Luscombe DK, John V. Influence of age, cigarette smoking and the oral contraceptive on plasma concentrations of clomipramine. Postgrad Med J. 1980;56(Suppl 1):99–102.

    PubMed  Google Scholar 

  91. Brachtendorf L, Jetter A, Beckurts KT, Holscher AH, Fuhr U. Cytochrome P450 enzymes contributing to demethylation of maprotiline in man. Pharmacol Toxicol. 2002;90:144–9.

    CAS  PubMed  Google Scholar 

  92. Paaby P, Moller-Petersen J, Larsen CE, Raffn K. Endogenous overnight creatinine clearance, serum beta 2-microglobulin and serum water during the menstrual cycle. Acta Med Scand. 1987;221:191–7.

    CAS  PubMed  Google Scholar 

  93. Christy NP, Shaver JC. Estrogens and the kidney. Kidney Int. 1974;6:366–76.

    CAS  PubMed  Google Scholar 

  94. Harvey AM, Malvin RL, Vander AJ. Comparison of creatinine secretion in men and women. Nephron. 1966;3:201–5.

    CAS  PubMed  Google Scholar 

  95. Nafziger AN, Schwartzman MS, Bertino JS Jr. Absence of tobramycin pharmacokinetic and creatinine clearance variation during the menstrual cycle: implied absence of variation in glomerular filtration rate. J Clin Pharmacol. 1989;29:757–63.

    CAS  PubMed  Google Scholar 

  96. Davison JM, Noble MC. Serial changes in 24 hour creatinine clearance during normal menstrual cycles and the first trimester of pregnancy. Br J Obstet Gynaecol. 1981;88:10–7.

    CAS  PubMed  Google Scholar 

  97. Forsling ML, Akerlund M, Stromberg P. Variations in plasma concentrations of vasopressin during the menstrual cycle. J Endocrinol. 1981;89:263–6.

    CAS  PubMed  Google Scholar 

  98. Katz FH, Romfh P. Plasma aldosterone and renin activity during the menstrual cycle. J Clin Endocrinol Metab. 1972;34:819–21.

    CAS  PubMed  Google Scholar 

  99. Olson BR, Forman MR, Lanza E, McAdam PA, Beecher G, Kimzey LM, et al. Relation between sodium balance and menstrual cycle symptoms in normal women. Ann Intern Med. 1996;125:564–7.

    CAS  PubMed  Google Scholar 

  100. Albano JD, Campbell SK, Farrer A, Millar JG. Gender differences in urinary kallikrein excretion in man: variation throughout the menstrual cycle. Clin Sci. 1994;86:227–31.

    CAS  PubMed  Google Scholar 

  101. Brennan IM, Feltrin KL, Nair NS, Hausken T, Little TJ, Gentilcore D, et al. Effects of the phases of the menstrual cycle on gastric emptying, glycemia, plasma GLP-1 and insulin, and energy intake in healthy lean women. Am J Physiol Gastrointest Liver Physiol. 2009;297:G602–10.

    CAS  PubMed  Google Scholar 

  102. Miller SB, Sita A. Parental history of hypertension, menstrual cycle phase, and cardiovascular response to stress. Psychosom Med. 1994;56:61–9.

    CAS  PubMed  Google Scholar 

  103. Dunne FP, Barry DG, Ferriss JB, Grealy G, Murphy D. Changes in blood pressure during the normal menstrual cycle. Cli Sci (Lond). 1991;81:515–8.

    CAS  Google Scholar 

  104. Tersman Z, Collins A, Eneroth P. Cardiovascular responses to psychological and physiological stressors during the menstrual cycle. Psychosom Med. 1991;53:185–97.

    CAS  PubMed  Google Scholar 

  105. Webb P. 24-hour energy expenditure and the menstrual cycle. Am J Clin Nutr. 1986;44:614–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No financial support has been received for the preparation of this review. All authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbro N. Melgert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damoiseaux, V.A., Proost, J.H., Jiawan, V.C.R. et al. Sex Differences in the Pharmacokinetics of Antidepressants: Influence of Female Sex Hormones and Oral Contraceptives. Clin Pharmacokinet 53, 509–519 (2014). https://doi.org/10.1007/s40262-014-0145-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0145-2

Keywords

Navigation