Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of Anticoagulants in Paediatric Patients

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Given the rising incidence of thrombotic complications in paediatric patients, understanding of the pharmacologic behaviour of anticoagulant drugs in children has gained importance. Significant developmental differences between children and adults in the haemostatic system and pharmacologic parameters for individual drugs highlight potentially unique aspects of anticoagulant pharmacology in this special and vulnerable population. This review focuses on pharmacologic information relevant to the dosing of unfractionated heparin, low molecular weight heparin, warfarin, bivalirudin, argatroban and fondaparinux in paediatric patients. The bulk of clinical experience with paediatric anticoagulation rests with the first three of these agents, each of which requires higher bodyweight-based dosing for the youngest patients, compared with adults, in order to achieve comparable pharmacodynamic effects, likely related to an inverse correlation between age and bodyweight-normalized clearance of these drugs. Whether extrapolation of therapeutic ranges targeted for adult patients prescribed these agents is valid for children, however, is unknown and a high priority for future research. Novel oral anticoagulants, such as dabigatran, rivaroxaban and apixaban, hold promise for future use in paediatrics but require further pharmacologic study in infants, children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Raffini L, Huang YS, Witmer C, Feudtner C. Dramatic increase in venous thromboembolism in children’s hospitals in the United States from 2001 to 2007. Pediatrics. 2009;124(4):1001–8.

    Article  PubMed  Google Scholar 

  2. Stein PD, Kayali F, Olson RE. Incidence of venous thromboembolism in infants and children: data from the National Hospital Discharge Survey. J Pediatr. 2004;145(4):563–5.

    Article  PubMed  Google Scholar 

  3. Vu LT, Nobuhara KK, Lee H, Farmer DL. Determination of risk factors for deep venous thrombosis in hospitalized children. J Pediatr Surg. 2008;43(6):1095–9.

    Article  PubMed  Google Scholar 

  4. Monagle P, Chan AK, Goldenberg NA, Ichord RN, Journeycake JM, Nowak-Gottl U, et al. Antithrombotic therapy in neonates and children: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e737S–801S.

  5. Andrew M. Developmental hemostasis: relevance to thromboembolic complications in pediatric patients. Thromb Haemost. 1995;74(1):415–25.

    PubMed  CAS  Google Scholar 

  6. Monagle P, Barnes C, Ignjatovic V, Furmedge J, Newall F, Chan A, et al. Developmental haemostasis: impact for clinical haemostasis laboratories. Thromb Haemost. 2006;95(2):362–72.

    PubMed  CAS  Google Scholar 

  7. Ko RH, Young G. Pharmacokinetic- and pharmacodynamic-based antithrombotic dosing recommendations in children. Expert Rev Clin Pharmacol. 2012;5(4):389–96.

    Article  PubMed  CAS  Google Scholar 

  8. Young G. Old and new antithrombotic drugs in neonates and infants. Semin Fetal Neonatal Med. 2011;16(6):349–54.

    Article  PubMed  Google Scholar 

  9. Young G. New anticoagulants in children: a review of recent studies and a look to the future. Thromb Res. 2011;127(2):70–4.

    Article  PubMed  CAS  Google Scholar 

  10. Kozul C, Newall F, Monagle P, Mertyn E, Ignjatovic V. A clinical audit of antithrombin concentrate use in a tertiary paediatric centre. J Paediatr Child Health. 2012;48(8):681–4.

    Article  PubMed  Google Scholar 

  11. Newall F, Johnston L, Ignjatovic V, Monagle P. Unfractionated heparin therapy in infants and children. Pediatrics. 2009;123(3):e510–8.

    Article  PubMed  Google Scholar 

  12. Kitchen S, Theaker J, Preston FE. Monitoring unfractionated heparin therapy: relationship between eight anti-Xa assays and a protamine titration assay. Blood Coagul Fibrinolysis. 2000;11(2):137–44.

    PubMed  CAS  Google Scholar 

  13. Ignjatovic V, Summerhayes R, Gan A, Than J, Chan A, Cochrane A, et al. Monitoring unfractionated heparin (UFH) therapy: which anti-factor Xa assay is appropriate? Thromb Res. 2007;120(3):347–51.

    Article  PubMed  CAS  Google Scholar 

  14. Newall F, Ignjatovic V, Johnston L, Summerhayes R, Lane G, Cranswick N, et al. Clinical use of unfractionated heparin therapy in children: time for change? Br J Haematol. 2010;150(6):674–8.

    Article  PubMed  CAS  Google Scholar 

  15. Estes JW. Clinical pharmacokinetics of heparin. Clin Pharmacokinet. 1980;5(3):204–20.

    Article  PubMed  CAS  Google Scholar 

  16. Newall F, Ignjatovic V, Johnston L, Lane G, Summerhayes R, Cranswick N, et al. Unfractionated heparin has an age-dependent pharmacokinetic profile in children. J Thromb Haemost. 2009;7(s2):774.

    Google Scholar 

  17. McDonald MM, Jacobson LJ, Hay WW Jr, Hathaway WE. Heparin clearance in the newborn. Pediatr Res. 1981;15(7):1015–8.

    Article  PubMed  CAS  Google Scholar 

  18. Newall F, Ignjatovic V, Johnston L, Summerhayes R, Lane G, Cranswick N, et al. Age is a determinant factor for measures of concentration and effect in children requiring unfractionated heparin. Thromb Haemost. 2010;103(5):1085–90.

    Article  PubMed  CAS  Google Scholar 

  19. Guzzetta NA, Miller BE, Todd K, Szlam F, Moore RH, Tosone SR. An evaluation of the effects of a standard heparin dose on thrombin inhibition during cardiopulmonary bypass in neonates. Anesth Analg. 2005;100(5):1276–82 (table).

    Article  PubMed  CAS  Google Scholar 

  20. Newall F, Ignjatovic V, Summerhayes R, Gan A, Butt W, Johnston L, et al. In vivo age dependency of unfractionated heparin in infants and children. Thromb Res. 2009;123(5):710–4.

    Article  PubMed  CAS  Google Scholar 

  21. Ignjatovic V, Straka E, Summerhayes R, Monagle P. Age-specific differences in binding of heparin to plasma proteins. J Thromb Haemost. 2010;8(6):1290–4.

    Article  PubMed  CAS  Google Scholar 

  22. Hirsh J, Raschke R. Heparin and low-molecular-weight heparin: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126(3 Suppl):188S–203S.

    Article  PubMed  CAS  Google Scholar 

  23. Ignjatovic V, Summerhayes R, Than J, Gan A, Monagle P. Therapeutic range for unfractionated heparin therapy: age-related differences in response in children. J Thromb Haemost. 2006;4(10):2280–2.

    Article  PubMed  CAS  Google Scholar 

  24. Schechter T, Finkelstein Y, Ali M, Kahr WH, Williams S, Chan AK, et al. Unfractionated heparin dosing in young infants: clinical outcomes in a cohort monitored with anti-factor Xa levels. J Thromb Haemost. 2012;10(3):368–74.

    Article  PubMed  CAS  Google Scholar 

  25. Andrew M, Marzinotto V, Massicotte P, Blanchette V, Ginsberg J, Brill-Edwards P, et al. Heparin therapy in pediatric patients: a prospective cohort study. Pediatr Res. 1994;35(1):78–83.

    Article  PubMed  CAS  Google Scholar 

  26. Kuhle S, Eulmesekian P, Kavanagh B, Massicotte P, Vegh P, Lau A, et al. Lack of correlation between heparin dose and standard clinical monitoring tests in treatment with unfractionated heparin in critically ill children. Haematologica. 2007;92(4):554–7.

    Article  PubMed  CAS  Google Scholar 

  27. Chan AK, Black L, Ing C, Brandao LR, Williams S. Utility of aPTT in monitoring unfractionated heparin in children. Thromb Res. 2008;122(1):135–6.

    Article  PubMed  CAS  Google Scholar 

  28. Newall F, Chan AK, Ignjatovic V, Monagle P. Recommendations for developing uniform laboratory monitoring of heparinoid anticoagulants in children. J Thromb Haemost. 2012;10(1):145–7.

    Article  PubMed  CAS  Google Scholar 

  29. Taylor BN, Bork SJ, Kim S, Moffett BS, Yee DL. Evaluation of weight-based dosing of unfractionated heparin in obese children. J Pediatr. 2013. In Press.

  30. Guzzetta NA, Amin SJ, Tosone AK, Miller BE. Change in heparin potency and effects on the activated clotting time in children undergoing cardiopulmonary bypass. Anesth Analg. 2012;115(4):921–4.

    Article  PubMed  CAS  Google Scholar 

  31. Martindale SJ, Shayevitz JR, D’Errico C. The activated coagulation time: suitability for monitoring heparin effect and neutralization during pediatric cardiac surgery. J Cardiothorac Vasc Anesth. 1996;10(4):458–63.

    Article  PubMed  CAS  Google Scholar 

  32. Andrew M, Mitchell L, Vegh P, Ofosu F. Thrombin regulation in children differs from adults in the absence and presence of heparin. Thromb Haemost. 1994;72(6):836–42.

    PubMed  CAS  Google Scholar 

  33. Hirsh J, Levine MN. Low molecular weight heparin. Blood. 1992;79(1):1–17.

    PubMed  CAS  Google Scholar 

  34. Nowak-Gottl U, Bidlingmaier C, Krumpel A, Gottl L, Kenet G. Pharmacokinetics, efficacy, and safety of LMWHs in venous thrombosis and stroke in neonates, infants and children. Br J Pharmacol. 2008;153(6):1120–7.

    Article  PubMed  CAS  Google Scholar 

  35. Samama MM, Gerotziafas GT. Comparative pharmacokinetics of LMWHs. Semin Thromb Hemost. 2000;26(Suppl 1):31–8.

    Article  PubMed  CAS  Google Scholar 

  36. Massicotte P, Adams M, Marzinotto V, Brooker LA, Andrew M. Low-molecular-weight heparin in pediatric patients with thrombotic disease: a dose finding study. J Pediatr. 1996;128(3):313–8.

    Article  PubMed  CAS  Google Scholar 

  37. Punzalan RC, Hillery CA, Montgomery RR, Scott CA, Gill JC. Low-molecular-weight heparin in thrombotic disease in children and adolescents. J Pediatr Hematol Oncol. 2000;22(2):137–42.

    Article  PubMed  CAS  Google Scholar 

  38. Kuhle S, Massicotte P, Dinyari M, Vegh P, Mitchell D, Marzinotto V, et al. Dose-finding and pharmacokinetics of therapeutic doses of tinzaparin in pediatric patients with thromboembolic events. Thromb Haemost. 2005;94(6):1164–71.

    PubMed  CAS  Google Scholar 

  39. O’Brien SH, Lee H, Ritchey AK. Once-daily enoxaparin in pediatric thromboembolism: a dose finding and pharmacodynamics/pharmacokinetics study. J Thromb Haemost. 2007;5(9):1985–7.

    Article  PubMed  Google Scholar 

  40. Sanderink GJ, Le LA, Jariwala N, Harding N, Ozoux ML, Shukla U, et al. The pharmacokinetics and pharmacodynamics of enoxaparin in obese volunteers. Clin Pharmacol Ther. 2002;72(3):308–18.

    Article  PubMed  CAS  Google Scholar 

  41. Trame MN, Mitchell L, Krumpel A, Male C, Hempel G, Nowak-Gottl U. Population pharmacokinetics of enoxaparin in infants, children and adolescents during secondary thromboembolic prophylaxis: a cohort study. J Thromb Haemost. 2010;8(9):1950–8.

    Article  PubMed  CAS  Google Scholar 

  42. Schobess R, During C, Bidlingmaier C, Heinecke A, Merkel N, Nowak-Gottl U. Long-term safety and efficacy data on childhood venous thrombosis treated with a low molecular weight heparin: an open-label pilot study of once-daily versus twice-daily enoxaparin administration. Haematologica. 2006;91(12):1701–4.

    PubMed  CAS  Google Scholar 

  43. Laporte S, Mismetti P, Piquet P, Doubine S, Touchot A, Decousus H. Population pharmacokinetic of nadroparin calcium (Fraxiparine) in children hospitalised for open heart surgery. Eur J Pharm Sci. 1999;8(2):119–25.

    Article  PubMed  CAS  Google Scholar 

  44. Massicotte P, Julian JA, Marzinotto V, Gent M, Shields K, Chan AK, et al. Dose-finding and pharmacokinetic profiles of prophylactic doses of a low molecular weight heparin (reviparin-sodium) in pediatric patients. Thromb Res. 2003;109(2–3):93–9.

    Article  PubMed  CAS  Google Scholar 

  45. Bontadelli J, Moeller A, Schmugge M, Schraner T, Kretschmar O, Bauersfeld U, et al. Enoxaparin therapy for arterial thrombosis in infants with congenital heart disease. Intensive Care Med. 2007;33(11):1978–84.

    Article  PubMed  CAS  Google Scholar 

  46. Dix D, Andrew M, Marzinotto V, Charpentier K, Bridge S, Monagle P, et al. The use of low molecular weight heparin in pediatric patients: a prospective cohort study. J Pediatr. 2000;136(4):439–45.

    Article  PubMed  CAS  Google Scholar 

  47. Merkel N, Gunther G, Schobess R. Long-term treatment of thrombosis with enoxaparin in pediatric and adolescent patients. Acta Haematol. 2006;115(3–4):230–6.

    Article  PubMed  CAS  Google Scholar 

  48. Nohe N, Flemmer A, Rumler R, Praun M, Auberger K. The low molecular weight heparin dalteparin for prophylaxis and therapy of thrombosis in childhood: a report on 48 cases. Eur J Pediatr. 1999;158(Suppl 3):S134–9.

    Article  PubMed  CAS  Google Scholar 

  49. Streif W, Goebel G, Chan AK, Massicotte MP. Use of low molecular mass heparin (enoxaparin) in newborn infants: a prospective cohort study of 62 patients. Arch Dis Child Fetal Neonatal Ed. 2003;88(5):F365–70.

    Article  PubMed  CAS  Google Scholar 

  50. Bauman ME, Belletrutti MJ, Bajzar L, Black KL, Kuhle S, Bauman ML, et al. Evaluation of enoxaparin dosing requirements in infants and children: better dosing to achieve therapeutic levels. Thromb Haemost. 2009;101(1):86–92.

    PubMed  CAS  Google Scholar 

  51. Estepp JH, Smeltzer M, Reiss UM. The impact of quality and duration of enoxaparin therapy on recurrent venous thrombosis in children. Pediatr Blood Cancer. 2012;59(1):105–9.

    Article  PubMed  Google Scholar 

  52. Ho SH, Wu JK, Hamilton DP, Dix DB, Wadsworth LD. An assessment of published pediatric dosage guidelines for enoxaparin: a retrospective review. J Pediatr Hematol Oncol. 2004;26(9):561–6.

    Article  PubMed  Google Scholar 

  53. Ignjatovic V, Najid S, Newall F, Summerhayes R, Monagle P. Dosing and monitoring of enoxaparin (low molecular weight heparin) therapy in children. Br J Haematol. 2010;149(5):734–8.

    Article  PubMed  CAS  Google Scholar 

  54. Lulic-Botica M, Rajpurkar M, Sabo C, Tutag-Lehr V, Natarajan G. Fluctuations of anti-Xa concentrations during maintenance enoxaparin therapy for neonatal thrombosis. Acta Paediatr. 2012;101(4):e147–50.

    Article  PubMed  CAS  Google Scholar 

  55. Malowany JI, Knoppert DC, Chan AK, Pepelassis D, Lee DS. Enoxaparin use in the neonatal intensive care unit: experience over 8 years. Pharmacotherapy. 2007;27(9):1263–71.

    Article  PubMed  CAS  Google Scholar 

  56. Michaels LA, Gurian M, Hegyi T, Drachtman RA. Low molecular weight heparin in the treatment of venous and arterial thromboses in the premature infant. Pediatrics. 2004;114(3):703–7.

    Article  PubMed  Google Scholar 

  57. Malowany JI, Monagle P, Knoppert DC, Lee DS, Wu J, McCusker P, et al. Enoxaparin for neonatal thrombosis: a call for a higher dose for neonates. Thromb Res. 2008;122(6):826–30.

    Article  PubMed  CAS  Google Scholar 

  58. Ignjatovic V, Summerhayes R, Newall F, Monagle P. The in vitro response to low-molecular-weight heparin is not age-dependent in children. Thromb Haemost. 2010;103(4):855–6.

    Article  PubMed  CAS  Google Scholar 

  59. Richard AA, Kim S, Moffett BS, Bomgaars L, Mahoney D Jr, Yee DL. Comparison of anti-Xa levels in obese and non-obese pediatric patients receiving treatment doses of enoxaparin. J Pediatr. 2013;162(2):293–6.

    Article  PubMed  CAS  Google Scholar 

  60. Andrew M, Marzinotto V, Brooker LA, Adams M, Ginsberg J, Freedom R, et al. Oral anticoagulation therapy in pediatric patients: a prospective study. Thromb Haemost. 1994;71(3):265–9.

    PubMed  CAS  Google Scholar 

  61. Streif W, Andrew M, Marzinotto V, Massicotte P, Chan AK, Julian JA, et al. Analysis of warfarin therapy in pediatric patients: a prospective cohort study of 319 patients. Blood. 1999;94(9):3007–14.

    PubMed  CAS  Google Scholar 

  62. Bonduel M, Sciuccati G, Hepner M, Torres AF, Pieroni G, Frontroth JP, et al. Acenocoumarol therapy in pediatric patients. J Thromb Haemost. 2003;1(8):1740–3.

    Article  PubMed  CAS  Google Scholar 

  63. Woods A, Vargas J, Berri G, Kreutzer G, Meschengieser S, Lazzari MA. Antithrombotic therapy in children and adolescents. Thromb Res. 1986;42(3):289–301.

    Article  PubMed  CAS  Google Scholar 

  64. Piquet P, Losay J, Doubine S. Acenocoumarol (Sintrom) and fluinidione (Previscan) in pediatrics after cardiac surgical procedures. Arch Pediatr. 2002;9(11):1137–44.

    Article  PubMed  CAS  Google Scholar 

  65. Gunther T, Mazzitelli D, Schreiber C, Wottke M, Paek SU, Meisner H, et al. Mitral-valve replacement in children under 6 years of age. Eur J Cardiothorac Surg. 2000;17(4):426–30.

    Article  PubMed  CAS  Google Scholar 

  66. Nowak-Gottl U, Dietrich K, Schaffranek D, Eldin NS, Yasui Y, Geisen C, et al. In pediatric patients, age has more impact on dosing of vitamin K antagonists than VKORC1 or CYP2C9 genotypes. Blood. 2010;116(26):6101–5.

    Article  PubMed  Google Scholar 

  67. Wermes C, Bergmann F, Reller B, Sykora KW. Severe protein C deficiency and aseptic osteonecrosis of the hip joint: a case report. Eur J Pediatr. 1999;158(Suppl 3):S159–61.

    Article  PubMed  Google Scholar 

  68. Moreau C, Bajolle F, Siguret V, Lasne D, Golmard JL, Elie C, et al. Vitamin K antagonists in children with heart disease: height and VKORC1 genotype are the main determinants of the warfarin dose requirement. Blood. 2012;119(3):861–7.

    Article  PubMed  CAS  Google Scholar 

  69. O’Reilly RA. Studies on the optical enantiomorphs of warfarin in man. Clin Pharmacol Ther. 1974;16(2):348–54.

    PubMed  Google Scholar 

  70. Holford NH. Clinical pharmacokinetics and pharmacodynamics of warfarin: understanding the dose-effect relationship. Clin Pharmacokinet. 1986;11(6):483–504.

    Article  PubMed  CAS  Google Scholar 

  71. Takahashi H, Ishikawa S, Nomoto S, Nishigaki Y, Ando F, Kashima T, et al. Developmental changes in pharmacokinetics and pharmacodynamics of warfarin enantiomers in Japanese children. Clin Pharmacol Ther. 2000;68(5):541–55.

    Article  PubMed  CAS  Google Scholar 

  72. Doyle JJ, Koren G, Cheng MY, Blanchette VS. Anticoagulation with sodium warfarin in children: effect of a loading regimen. J Pediatr. 1988;113(6):1095–7.

    Article  PubMed  CAS  Google Scholar 

  73. Massicotte P, Leaker M, Marzinotto V, Adams M, Freedom R, Williams W, et al. Enhanced thrombin regulation during warfarin therapy in children compared to adults. Thromb Haemost. 1998;80(4):570–4.

    PubMed  CAS  Google Scholar 

  74. Biss TT, Avery PJ, Brandao LR, Chalmers EA, Williams MD, Grainger JD, et al. VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood. 2012;119(3):868–73.

    Article  PubMed  CAS  Google Scholar 

  75. Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308(3):965–74.

    Article  PubMed  CAS  Google Scholar 

  76. Murry DJ, Crom WR, Reddick WE, Bhargava R, Evans WE. Liver volume as a determinant of drug clearance in children and adolescents. Drug Metab Dispos. 1995;23(10):1110–6.

    PubMed  CAS  Google Scholar 

  77. Visscher H, Amstutz U, Sistonen J, Ross CJ, Hayden MR, Carleton BC. Pharmacogenomics of cardiovascular drugs and adverse effects in pediatrics. J Cardiovasc Pharmacol. 2011;58(3):228–39.

    Article  PubMed  CAS  Google Scholar 

  78. Biss TT, Adamson AJ, Seal CJ, Kamali F. The potential impact of dietary vitamin K status on anticoagulation control in children receiving warfarin. Pediatr Hematol Oncol. 2011;28(5):425–7.

    Article  PubMed  CAS  Google Scholar 

  79. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, et al. CYP4F2 genetic variant alters required warfarin dose. Blood. 2008;111(8):4106–12.

    Article  PubMed  CAS  Google Scholar 

  80. Carlquist JF, Anderson JL. Using pharmacogenetics in real time to guide warfarin initiation: a clinician update. Circulation. 2011;124(23):2554–9.

    Article  PubMed  Google Scholar 

  81. Biss T, Hamberg AK, Avery P, Wadelius M, Kamali F. Warfarin dose prediction in children using pharmacogenetics information. Br J Haematol. 2012;159(1):106–9.

    Article  PubMed  CAS  Google Scholar 

  82. Biss TT, Avery PJ, Williams MD, Brandao LR, Grainger JD, Kamali F. VKORC1 and CYP2C9 genotype is associated with over-anticoagulation during initiation of warfarin therapy in children. J Thromb Haemost. 2013;11(2):373–5.

    Article  PubMed  CAS  Google Scholar 

  83. Kato Y, Ichida F, Saito K, Watanabe K, Hirono K, Miyawaki T, et al. Effect of the VKORC1 genotype on warfarin dose requirements in Japanese pediatric patients. Drug Metab Pharmacokinet. 2011;26(3):295–9.

    Article  PubMed  CAS  Google Scholar 

  84. Kosaki K, Yamaghishi C, Sato R, Semejima H, Fuijita H, Tamura K, et al. 1173C>T polymorphism in VKORC1 modulates the required warfarin dose. Pediatr Cardiol. 2006;27(6):685–8.

    Article  PubMed  CAS  Google Scholar 

  85. Ruud E, Holmstrom H, Bergan S, Wesenberg F. Oral anticoagulation with warfarin is significantly influenced by steroids and CYP2C9 polymorphisms in children with cancer. Pediatr Blood Cancer. 2008;50(3):710–3.

    Article  PubMed  Google Scholar 

  86. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360(8):753–64.

    Article  PubMed  Google Scholar 

  87. Biss TT, Kamali F. Warfarin anticoagulation in children: is there a role for a personalized approach to dosing? Pharmacogenomics. 2012;13(11):1211–4.

    Article  PubMed  CAS  Google Scholar 

  88. Cetta F, Graham LC, Wrona LL, Arruda MJ, Walenga JM. Argatroban use during pediatric interventional cardiac catheterization. Catheter Cardiovasc Interv. 2004;61(1):147–9.

    Article  PubMed  Google Scholar 

  89. Deitcher SR, Topoulos AP, Bartholomew JR, Kichuk-Chrisant MR. Lepirudin anticoagulation for heparin-induced thrombocytopenia. J Pediatr. 2002;140(2):264–6.

    Article  PubMed  Google Scholar 

  90. Kawada T, Kitagawa H, Hoson M, Okada Y, Shiomura J. Clinical application of argatroban as an alternative anticoagulant for extracorporeal circulation. Hematol Oncol Clin North Am. 2000;14(2):445–57, x.

    Google Scholar 

  91. Severin T, Zieger B, Sutor AH. Anticoagulation with recombinant hirudin and danaparoid sodium in pediatric patients. Semin Thromb Hemost. 2002;28(5):447–54.

    Article  PubMed  CAS  Google Scholar 

  92. Young G, Tarantino MD, Wohrley J, Weber LC, Belvedere M, Nugent DJ. Pilot dose-finding and safety study of bivalirudin in infants <6 months of age with thrombosis. J Thromb Haemost. 2007;5(8):1654–9.

    Article  PubMed  CAS  Google Scholar 

  93. O’Brien SH, Yee DL, Lira J, Goldenberg NA, Young G. Prospective, open-label clinical trial of bivalirudin in children with venous thromboembolism. Blood. 2012;120(21).

  94. Forbes TJ, Hijazi ZM, Young G, Ringewald JM, Aquino PM, Vincent RN, et al. Pediatric catheterization laboratory anticoagulation with bivalirudin. Catheter Cardiovasc Interv. 2011;77(5):671–9.

    Article  PubMed  Google Scholar 

  95. Young G, Boshkov LK, Sullivan JE, Raffini LJ, Cox DS, Boyle DA, et al. Argatroban therapy in pediatric patients requiring nonheparin anticoagulation: an open-label, safety, efficacy, and pharmacokinetic study. Pediatr Blood Cancer. 2011;56(7):1103–9.

    Article  PubMed  CAS  Google Scholar 

  96. Madabushi R, Cox DS, Hossain M, Boyle DA, Patel BR, Young G, et al. Pharmacokinetic and pharmacodynamic basis for effective argatroban dosing in pediatrics. J Clin Pharmacol. 2011;51(1):19–28.

    Article  PubMed  CAS  Google Scholar 

  97. Boshkov LK, Kirby A, Shen I, Ungerleider RM. Recognition and management of heparin-induced thrombocytopenia in pediatric cardiopulmonary bypass patients. Ann Thorac Surg. 2006;81(6):S2355–9.

    Article  PubMed  Google Scholar 

  98. Sharathkumar AA, Crandall C, Lin JJ, Pipe S. Treatment of thrombosis with fondaparinux (Arixtra) in a patient with end-stage renal disease receiving hemodialysis therapy. J Pediatr Hematol Oncol. 2007;29(8):581–4.

    Article  PubMed  Google Scholar 

  99. Young G, Yee DL, O’Brien SH, Khanna R, Barbour A, Nugent DJ. FondaKIDS: a prospective pharmacokinetic and safety study of fondaparinux in children between 1 and 18 years of age. Pediatr Blood Cancer. 2011;57(6):1049–54.

    Article  PubMed  Google Scholar 

  100. Ko RH, Michieli C, Bernardini L, Young G. FondaKids II: long-term follow-up data of children receiving fondaparinux for treatment of venous thrombotic events. Blood. 2012;120(21).

  101. Eriksson BI, Quinlan DJ, Eikelboom JW. Novel oral factor Xa and thrombin inhibitors in the management of thromboembolism. Annu Rev Med. 2011;62:41–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Linda DeMuro, MLS, and Susi Miller, MLIS, AHIP, from the Grant Morrow III, MD Medical Library at Nationwide Children’s Hospital (Columbus, OH, USA) for their assistance in designing the search strategy and performing the initial literature search. Drs Yee and Young have no financial conflicts of interest to disclose. Dr O’Brien is a member of a Bristol-Myers Squibb advisory board for paediatric apixaban studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald L. Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yee, D.L., O’Brien, S.H. & Young, G. Pharmacokinetics and Pharmacodynamics of Anticoagulants in Paediatric Patients. Clin Pharmacokinet 52, 967–980 (2013). https://doi.org/10.1007/s40262-013-0094-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0094-1

Keywords

Navigation