Skip to main content
Log in

A Systematic Review of Neurocognitive Effects of Subanesthetic Doses of Intravenous Ketamine in Major Depressive Disorder, Post-Traumatic Stress Disorder, and Healthy Population

  • Systematic Review
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objective

Ketamine, a noncompetitive, high-affinity antagonist of the N-methyl-d-aspartate type glutamate receptor, has been investigated for its high efficacy and rapid antidepressant effect and, more recently, for its potential utility in post-traumatic stress disorder (PTSD). The proposal that ketamine’s antidepressant and anti-suicidal mechanism may be in part due to its procognitive effect contrasts with the well-established decreased performance on spatial working memory and pattern recognition memory among long-term frequent users. We aimed to review the neurocognitive effects of subanesthetic doses of intravenous ketamine in pharmacological studies among healthy subjects and patients with PTSD or depression.

Methods

We included studies in English, among healthy adults, or with PTSD or unipolar or bipolar depression where the primary or secondary cognitive outcomes were measured by means of validated neuropsychological test. We excluded studies that reported the use of ketamine only in combination with other drugs or psychotherapy, or studies investigating emotion-laden cognitive functions.

Results

Ketamine administration among patients with depression and possibly with PTSD does not show significant impairment of cognitive functions in the short-term, in contrast with the immediate altered cognitive dysfunction found in healthy subjects. The potential procognitive effects of ketamine seem more pronounced in cognitive domains of executive function, which is in line with the putative molecular, cellular, and synaptic mechanisms of ketamine’s therapeutic action.

Conclusions

The potential procognitive effect of ketamine deserves further exploration. Whether ketamine has transient or sustained neurocognitive benefits beyond its antidepressant effects is unknown. Improved cognition by ketamine might be used to facilitate psychotherapy interventions for PTSD and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Green SM, Li J. Ketamine in adults: what emergency physicians need to know about patient selection and emergence reactions. Acad Emerg Med. 2000;7(3):278–81. https://doi.org/10.1111/j.1553-2712.2000.tb01076.x.

    Article  CAS  PubMed  Google Scholar 

  2. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64. https://doi.org/10.1001/archpsyc.63.8.856.

    Article  CAS  PubMed  Google Scholar 

  3. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry. 2013;170(10):1134–42. https://doi.org/10.1176/appi.ajp.2013.13030392.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P, et al. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J Psychiatry. 2019;176(6):428–38. https://doi.org/10.1176/appi.ajp.2019.19020172 (Erratum in: Am J Psychiatry. 2019;176(8):669).

    Article  PubMed  Google Scholar 

  5. Advisory Council on the Misuse of Drugs. Ketamine: a review of use and harm. https://www.gov.uk/government/publications/ketamine-report. Accessed 10 Dec 2013.

  6. Ploski JE, Vaidya VA. The neurocircuitry of posttraumatic stress disorder and major depression: insights into overlapping and distinct circuit dysfunction—a tribute to Ron Duman. Biol Psychiatry. 2021;90(2):109–17. https://doi.org/10.1016/j.biopsych.2021.04.009.

    Article  PubMed  Google Scholar 

  7. Lam RW, Kennedy SH, Mclntyre RS, Khullar A. Cognitive dysfunction in major depressive disorder: effects on psychosocial functioning and implications for treatment. Can J Psychiatry. 2014;59(12):649–54. https://doi.org/10.1177/070674371405901206.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Torrent C, Martinez-Aran A, Daban C, Amann B, Balanza-Martinez V, del Mar BC, et al. Effects of atypical antipsychotics on neurocognition in euthymic bipolar patients. Compr Psychiatry. 2011;52(6):613–22. https://doi.org/10.1016/j.comppsych.2010.12.009.

    Article  PubMed  Google Scholar 

  9. Aupperle RL, Allard CB, Grimes EM, Simmons AN, Flagan T, Behrooznia M, et al. Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Arch Gen Psychiatry. 2012;69(4):360–71. https://doi.org/10.1001/archgenpsychiatry.2011.1539.

    Article  PubMed  Google Scholar 

  10. Yang Z, Oathes DJ, Linn KA, Bruce SE, Satterthwaite TD, Cook PA, et al. Cognitive behavioral therapy is associated with enhanced cognitive control network activity in major depression and posttraumatic stress disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(4):311–9. https://doi.org/10.1016/j.bpsc.2017.12.006.

    Article  PubMed  Google Scholar 

  11. Lee Y, Syeda K, Maruschak NA, Cha DS, Mansur RB, Wium-Andersen IK, et al. A new perspective on the anti-suicide effects with ketamine treatment: a procognitive effect. J Clin Psychopharmacol. 2016;36(1):50–6. https://doi.org/10.1097/JCP.0000000000000441.

    Article  CAS  PubMed  Google Scholar 

  12. Morgan CJ, Muetzelfeldt L, Curran HV. Consequences of chronic ketamine self-administration upon neurocognitive function and psychological wellbeing: a 1-year longitudinal study. Addiction. 2010;105(1):121–33. https://doi.org/10.1111/j.1360-0443.2009.02761.x (Erratum in: Addiction. 2010;105(4):766).

    Article  PubMed  Google Scholar 

  13. Roiser JP, Sahakian BJ. Hot and cold cognition in depression. CNS Spectr. 2013;18(3):139–49. https://doi.org/10.1017/S1092852913000072.

    Article  PubMed  Google Scholar 

  14. Morgan CJ, Mofeez A, Brandner B, Bromley L, Curran HV. Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology. 2004;29(1):208–18. https://doi.org/10.1038/sj.npp.1300342.

    Article  CAS  PubMed  Google Scholar 

  15. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51(3):199–214. https://doi.org/10.1001/archpsyc.1994.03950030035004.

    Article  CAS  PubMed  Google Scholar 

  16. Anand A, Charney DS, Oren DA, Berman RM, Hu XS, Cappiello A, et al. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists. Arch Gen Psychiatry. 2000;57(3):270–6. https://doi.org/10.1001/archpsyc.57.3.270.

    Article  CAS  PubMed  Google Scholar 

  17. Krystal JH, Karper LP, Bennett A, D’Souza DC, Abi-Dargham A, Morrissey K, et al. Interactive effects of subanesthetic ketamine and subhypnotic lorazepam in humans. Psychopharmacology. 1998;135(3):213–29. https://doi.org/10.1007/s002130050503.

    Article  CAS  PubMed  Google Scholar 

  18. Krystal JH, Bennett A, Abi-Saab D, Belger A, Karper LP, D’Souza DC, et al. Dissociation of ketamine effects on rule acquisition and rule implementation: possible relevance to NMDA receptor contributions to executive cognitive functions. Biol Psychiatry. 2000;47(2):137–43. https://doi.org/10.1016/s0006-3223(99)00097-9.

    Article  CAS  PubMed  Google Scholar 

  19. D’Souza DC, Ahn K, Bhakta S, Elander J, Singh N, Nadim H, et al. Nicotine fails to attenuate ketamine-induced cognitive deficits and negative and positive symptoms in humans: implications for schizophrenia. Biol Psychiatry. 2012;72(9):785–94. https://doi.org/10.1016/j.biopsych.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  20. Ghoneim MM, Hinrichs JV, Mewaldt SP, Petersen RC. Ketamine: behavioral effects of subanesthetic doses. J Clin Psychopharmacol. 1985;5(2):70–7.

    Article  CAS  Google Scholar 

  21. Krystal JH, Perry EB Jr, Gueorguieva R, Belger A, Madonick SH, Abi-Dargham A, et al. Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine: implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch Gen Psychiatry. 2005;62(9):985–94. https://doi.org/10.1001/archpsyc.62.9.985.

    Article  CAS  PubMed  Google Scholar 

  22. Rowland LM, Astur RS, Jung RE, Bustillo JR, Lauriello J, Yeo RA. Selective cognitive impairments associated with NMDA receptor blockade in humans. Neuropsychopharmacology. 2005;30(3):633–9.

    Article  CAS  Google Scholar 

  23. Adler CM, Goldberg TE, Malhotra AK, Pickar D, Breier A. Effects of ketamine on thought disorder, working memory, and semantic memory in healthy volunteers. Biol Psychiatry. 1998;43(11):811–6. https://doi.org/10.1038/sj.npp.1300642.

    Article  CAS  PubMed  Google Scholar 

  24. Koychev I, William Deakin JF, El-Deredy W, Haenschel C. Effects of acute ketamine infusion on visual working memory: event-related potentials. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(3):253–62. https://doi.org/10.1016/j.bpsc.2016.09.008.

    Article  PubMed  Google Scholar 

  25. Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology. 1996;14(5):301–7. https://doi.org/10.1016/0893-133X(95)00137-3.

    Article  CAS  PubMed  Google Scholar 

  26. Hetem LA, Danion JM, Diemunsch P, Brandt C. Effect of a subanesthetic dose of ketamine on memory and conscious awareness in healthy volunteers. Psychopharmacology. 2000;152(3):283–8. https://doi.org/10.1007/s002130000511.

    Article  CAS  PubMed  Google Scholar 

  27. Shiroma PR, Albott CS, Johns B, Thuras P, Wels J, Lim KO. Neurocognitive performance and serial intravenous subanesthetic ketamine in treatment-resistant depression. Int J Neuropsychopharmacol. 2014;17(11):1805–13. https://doi.org/10.1017/S1461145714001011.

    Article  CAS  PubMed  Google Scholar 

  28. Shiroma PR, Thuras P, Wels J, Albott CS, Erbes C, Tye S, et al. Neurocognitive performance of repeated versus single intravenous subanesthetic ketamine in treatment resistant depression. J Affect Disord. 2020;277:470–7. https://doi.org/10.1016/j.jad.2020.08.058.

    Article  CAS  PubMed  Google Scholar 

  29. Chen MH, Li CT, Lin WC, Hong CJ, Tu PC, Bai YM, et al. Cognitive function of patients with treatment-resistant depression after a single low dose of ketamine infusion. J Affect Disord. 2018;241:1–7. https://doi.org/10.1016/j.jad.2018.07.033.

    Article  CAS  PubMed  Google Scholar 

  30. Araujo-de-Freitas L, Santos-Lima C, Mendonca-Filho E, Vieira F, Franca R, Magnavita G, et al. Neurocognitive aspects of ketamine and esketamine on subjects with treatment-resistant depression: a comparative, randomized and double-blind study. Psychiatry Res. 2021;303: 114058. https://doi.org/10.1016/j.psychres.2021.114058.

    Article  CAS  PubMed  Google Scholar 

  31. Murrough JW, Burdick KE, Levitch CF, Perez AM, Brallier JW, Chang LC, et al. Neurocognitive effects of ketamine and association with antidepressant response in individuals with treatment-resistant depression: a randomized controlled trial. Neuropsychopharmacology. 2015;40(5):1084–90. https://doi.org/10.1038/npp.2014.298.

    Article  CAS  PubMed  Google Scholar 

  32. Keilp JG, Madden SP, Marver JE, Frawley A, Burke AK, Herzallah MM, et al. Effects of ketamine versus midazolam on neurocognition at 24 hours in depressed patients with suicidal ideation. J Clin Psychiatry. 2021. https://doi.org/10.4088/JCP.21m13921.

    Article  PubMed  Google Scholar 

  33. Murrough JW, Wan LB, Iacoviello B, Collins KA, Solon C, Glicksberg B, et al. Neurocognitive effects of ketamine in treatment-resistant major depression: association with antidepressant response. Psychopharmacology. 2013. https://doi.org/10.1007/s00213-013-3255-x.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Diamond PR, Farmery AD, Atkinson S, Haldar J, Williams N, Cowen PJ. Ketamine infusions for treatment resistant depression: a series of 28 patients treated weekly or twice weekly in an ECT clinic. J Psychopharmacol. 2014;28(6):536–44. https://doi.org/10.1177/0269881114527361.

    Article  CAS  PubMed  Google Scholar 

  35. Permoda-Osip A, Kisielewski J, Bartkowska-Sniatkowska A, Rybakowski JK. Single ketamine infusion and neurocognitive performance in bipolar depression. Pharmacopsychiatry. 2015;48(2):78–9. https://doi.org/10.1055/s-0034-1394399.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng W, Zhou YL, Liu WJ, Wang CY, Zhan YN, Li HQ, et al. Neurocognitive performance and repeated-dose intravenous ketamine in major depressive disorder. J Affect Disord. 2018;246:241–7. https://doi.org/10.1016/j.jad.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  37. Basso L, Bonke L, Aust S, Gartner M, Heuser-Collier I, Otte C, et al. Antidepressant and neurocognitive effects of serial ketamine administration versus ECT in depressed patients. J Psychiatr Res. 2020;123:1–8. https://doi.org/10.1016/j.jpsychires.2020.01.002 (Erratum in: J Psychiatr Res. 2020;124:143).

    Article  PubMed  Google Scholar 

  38. Albott CS, Lim KO, Erbes C, Thuras P, Wels J, Tye SJ, et al. Neurocognitive effects of repeated ketamine infusions in comorbid posttraumatic stress disorder and major depressive disorder. J Affect Disord. 2022;308:289–97. https://doi.org/10.1016/j.jad.2022.04.066.

    Article  CAS  PubMed  Google Scholar 

  39. Liu W, Zhou Y, Zheng W, Wang C, Zhan Y, Lan X, et al. Repeated intravenous infusions of ketamine: neurocognition in patients with anxious and nonanxious treatment-resistant depression. J Affect Disord. 2019;259:1–6. https://doi.org/10.1016/j.jad.2019.08.012.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Y, Zheng W, Liu W, Wang C, Zhan Y, Li H, et al. Neurocognitive effects of six ketamine infusions and the association with antidepressant response in patients with unipolar and bipolar depression. J Psychopharmacol. 2018;32(10):1118–26. https://doi.org/10.1177/0269881118798614.

    Article  CAS  PubMed  Google Scholar 

  41. Feder A, Costi S, Rutter SB, Collins AB, Govindarajulu U, Jha MK, et al. A randomized controlled trial of repeated ketamine administration for chronic posttraumatic stress disorder. Am J Psychiatry. 2021;178(2):193–202. https://doi.org/10.1176/appi.ajp.2020.20050596.

    Article  PubMed  Google Scholar 

  42. Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res. 2009;201(2):239–43.

    Article  Google Scholar 

  43. Rauch SL, Shin LM, Phelps EA. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research–past, present, and future. Biol Psychiatry. 2006;60(4):376–82.

    Article  Google Scholar 

  44. Sheynin J, Liberzon I. Circuit dysregulation and circuit-based treatments in posttraumatic stress disorder. Neurosci Lett. 2017;10(649):133–8.

    Article  Google Scholar 

  45. Yuksel C, Ongur D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry. 2010;68(9):785–94.

    Article  Google Scholar 

  46. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959–64. https://doi.org/10.1126/science.1190287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clarke M, Razmjou S, Prowse N, Dwyer Z, Litteljohn D, Pentz R, et al. Ketamine modulates hippocampal neurogenesis and pro-inflammatory cytokines but not stressor induced neurochemical changes. Neuropharmacology. 2017;112(Pt A):210–20.

    Article  CAS  Google Scholar 

  48. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23(4):801–11.

    Article  CAS  Google Scholar 

  49. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17(8):2921–7.

    Article  CAS  Google Scholar 

  50. Rabiner EA. Imaging of striatal dopamine release elicited with NMDA antagonists: is there anything there to be seen? J Psychopharmacol. 2007;21(3):253–8.

    Article  CAS  Google Scholar 

  51. Abdallah CG, Averill LA, Collins KA, Geha P, Schwartz J, Averill C, et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology. 2017;42(6):1210–9. https://doi.org/10.1038/npp.2016.186.

    Article  CAS  PubMed  Google Scholar 

  52. Norbury A, Rutter SB, Collins AB, Costi S, Jha MK, Horn SR, et al. Neuroimaging correlates and predictors of response to repeated-dose intravenous ketamine in PTSD: preliminary evidence. Neuropsychopharmacology. 2021;46(13):2266–77. https://doi.org/10.1038/s41386-021-01104-4.

    Article  CAS  PubMed  Google Scholar 

  53. Zheng W, Zhou YL, Liu WJ, Wang CY, Zhan YN, Li HQ, et al. Neurocognitive performance and repeated-dose intravenous ketamine in major depressive disorder. J Affect Disord. 2019;246:241–7. https://doi.org/10.1016/j.jad.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  54. Wilkinson ST, Wright D, Fasula MK, Fenton L, Griepp M, Ostroff RB, et al. Cognitive behavior therapy may sustain antidepressant effects of intravenous ketamine in treatment-resistant depression. Psychother Psychosom. 2017;86(3):162–7. https://doi.org/10.1159/000457960.

    Article  PubMed  Google Scholar 

  55. Shiroma PR, Thuras P, Wels J, Erbes C, Kehle-Forbes S, Polusny M. A proof-of-concept study of subanesthetic intravenous ketamine combined with prolonged exposure therapy among veterans with posttraumatic stress disorder. J Clin Psychiatry. 2020;81(6):20113406. https://doi.org/10.4088/JCP.20113406.

    Article  Google Scholar 

  56. Ben-Zion Z, Fine NB, Keynan NJ, Admon R, Green N, Halevi M, et al. Cognitive flexibility predicts PTSD symptoms: observational and interventional studies. Front Psychiatry. 2018;9:477. https://doi.org/10.3389/fpsyt.2018.00477.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. Psychedelics and psychedelic-assisted psychotherapy. Am J Psychiatry. 2020;177(5):391–410. https://doi.org/10.1176/appi.ajp.2019.19010035.

    Article  PubMed  Google Scholar 

  58. Dumont GJ, Sweep FC, van der Steen R, Hermsen R, Donders AR, Touw DJ, et al. Increased oxytocin concentrations and prosocial feelings in humans after ecstasy (3,4-methylenedioxymethamphetamine) administration. Soc Neurosci. 2009;4(4):359–66. https://doi.org/10.1080/17470910802649470.

    Article  CAS  PubMed  Google Scholar 

  59. Dumont GJ, van Hasselt JG, de Kam M, van Gerven JM, Touw DJ, Buitelaar JK, et al. Acute psychomotor, memory and subjective effects of MDMA and THC co-administration over time in healthy volunteers. J Psychopharmacol. 2011;25(4):478–89. https://doi.org/10.1177/0269881110376687.

    Article  CAS  PubMed  Google Scholar 

  60. Hasler F, Studerus E, Lindner K, Ludewig S, Vollenweider FX. Investigation of serotonin-1A receptor function in the human psychopharmacology of MDMA. J Psychopharmacol. 2009;23(8):923–35. https://doi.org/10.1177/0269881108094650.

    Article  CAS  PubMed  Google Scholar 

  61. Schmidt A, Muller F, Dolder PC, Schmid Y, Zanchi D, Liechti ME, et al. Comparative effects of methylphenidate, modafinil, and MDMA on response inhibition neural networks in healthy subjects. Int J Neuropsychopharmacol. 2017;20(9):712–20. https://doi.org/10.1093/ijnp/pyx037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gamma A, Buck A, Berthold T, Liechti ME, Vollenweider FX. 3,4-Methylenedioxymethamphetamine (MDMA) modulates cortical and limbic brain activity as measured by [H(2)(15)O]-PET in healthy humans. Neuropsychopharmacology. 2000;23(4):388–95. https://doi.org/10.1016/S0893-133X(00)00130-5 (Erratum in: Neuropsychopharmacology 2000;23(5):following 598. Hell, D [corrected to Liechti, ME]).

    Article  CAS  PubMed  Google Scholar 

  63. Agurto C, Cecchi GA, Norel R, Ostrand R, Kirkpatrick M, Baggott MJ, et al. Detection of acute 3,4-methylenedioxymethamphetamine (MDMA) effects across protocols using automated natural language processing. Neuropsychopharmacology. 2020;45(5):823–32. https://doi.org/10.1038/s41386-020-0620-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pantoni MM, Anagnostaras SG. Cognitive effects of MDMA in laboratory animals: a systematic review focusing on dose. Pharmacol Rev. 2019;71(3):413–49. https://doi.org/10.1124/pr.118.017087 (Erratum in: Pharmacol Rev. 2021 Apr;73(2):729).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Doss MK, Povazan M, Rosenberg MD, Sepeda ND, Davis AK, Finan PH, et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl Psychiatry. 2021;11(1):574. https://doi.org/10.1038/s41398-021-01706-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chun MM, Turk-Browne NB. Interactions between attention and memory. Curr Opin Neurobiol. 2007;17(2):177–84. https://doi.org/10.1016/j.conb.2007.03.005.

    Article  CAS  PubMed  Google Scholar 

  67. Koyama AK, Hagan KA, Okereke OI, Weisskopf MG, Rosner B, Grodstein F. Evaluation of a self-administered computerized cognitive battery in an older population. Neuroepidemiology. 2015;45(4):264–72. https://doi.org/10.1159/000439592.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo R. Shiroma.

Ethics declarations

Funding

This work was supported by U.S. Department of Veterans Affairs Clinical Sciences Research and Development Merit Review Award (grant I01 CX001803 to Dr Shiroma). The funding organizations had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Conflicts of interest

The authors report no financial relationships with commercial interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

PRS and MRV-S contributed to conception and design of the review and writing of the manuscript. PRS, MRV-S, and YV provided critical review of the work and final approval of manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiroma, P.R., Velit-Salazar, M.R. & Vorobyov, Y. A Systematic Review of Neurocognitive Effects of Subanesthetic Doses of Intravenous Ketamine in Major Depressive Disorder, Post-Traumatic Stress Disorder, and Healthy Population. Clin Drug Investig 42, 549–566 (2022). https://doi.org/10.1007/s40261-022-01169-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-022-01169-z

Navigation