Skip to main content
Log in

Impact of Daridorexant, a Dual Orexin Receptor Antagonist, on Cardiac Repolarization Following Bedtime Dosing: Results from a Thorough QT Study Using Concentration-QT Analysis

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objective

Daridorexant is a new dual orexin receptor antagonist currently in late-stage clinical development for the treatment of insomnia. This randomized, double-blind, placebo-controlled, four-period crossover study investigated the effect of daridorexant at a therapeutic and supratherapeutic dose on QT interval duration.

Methods

Thirty-six healthy subjects received single oral doses of daridorexant (50 mg; 200 mg), moxifloxacin (400 mg; open label), and placebo. All treatments were administered at bedtime to mimic therapeutic practice. The primary analysis was based on linear mixed-effects concentration-QT modelling. Triplicate ECG data were extracted from Holter recordings at baseline and until 24 h post dosing at time points matching those for pharmacokinetic sampling. Plasma concentrations of daridorexant were determined over 24 h.

Results

Assay sensitivity was demonstrated based on mean baseline- and placebo-corrected QT interval using Fridericia’s formula (ΔΔQTcF) > 5 ms following moxifloxacin administration (p < 0.01). Following daridorexant administration, mean (90% confidence interval, CI) ΔΔQTcF was 1.40 ms (0.48; 2.32 ms) and 1.84 ms (−0.12; 3.79 ms) at the Cmax of 747 ng/mL (50 mg dose) and 1809 ng/mL (200 mg dose), respectively, i.e., the upper bounds of the CIs were < 10 ms defined as threshold of regulatory concern. Lack of relevant QT prolongation was confirmed by secondary by-time point analysis and absence of relevant findings in the categorical outlier analysis. Daridorexant was safe and well tolerated and its pharmacokinetics were consistent with previous data.

Conclusion

Daridorexant does not impair cardiac repolarization evidenced by absence of relevant QT prolongation at therapeutic and supratherapeutic doses.

Clinical Trials Registration ID: NCT04250506.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reynolds CF, O’Hara R. DSM-5 sleep-wake disorders classification: overview for use in clinical practice. Am J Psychiatry. 2013;170(10):1099–101.

    Article  Google Scholar 

  2. Roth T. Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007;3(5 Suppl):S7-10.

    PubMed  PubMed Central  Google Scholar 

  3. Krystal AD, Prather AA, Ashbrook LH. The assessment and management of insomnia: an update. World Psychiatry. 2019;18(3):337–52.

    Article  Google Scholar 

  4. Herring WJ, Roth T, Krystal AD, Michelson D. Orexin receptor antagonists for the treatment of insomnia and potential treatment of other neuropsychiatric indications. J Sleep Res. 2019;28(2):12782.

    Article  Google Scholar 

  5. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8(3):171–81.

    Article  CAS  Google Scholar 

  6. Dauvilliers Y, Zammit G, Fietze I, Mayleben D, Seboek Kinter D, Pain S, Daridorexant HJ. a new dual orexin receptor antagonist to treat insomnia disorder. Ann Neurol. 2020;87(3):347–56.

    Article  CAS  Google Scholar 

  7. Muehlan C, Vaillant C, Zenklusen I, Kraehenbuehl S, Dingemanse J. Clinical pharmacology, efficacy, and safety of orexin receptor antagonists for the treatment of insomnia disorders. Expert Opin Drug Metab Toxicol. 2020;16(11):1063–78.

    Article  CAS  Google Scholar 

  8. Muehlan C, Heuberger J, Juif PE, Croft M, van Gerven J, Dingemanse J. Accelerated development of the dual orexin receptor antagonist ACT-541468: integration of a microtracer in a first-in-human study. Clin Pharmacol Ther. 2018;104(5):1022–9.

    Article  CAS  Google Scholar 

  9. Boof ML, Alatrach A, Ufer M, Dingemanse J. Interaction potential of the dual orexin receptor antagonist ACT-541468 with CYP3A4 and food: results from two interaction studies. Eur J Clin Pharmacol. 2019;75(2):195–205.

    Article  CAS  Google Scholar 

  10. Muehlan C, Fischer H, Zimmer D, Aissaoui H, Grimont J, Boss C, Croft M, van Gerven J, Krahenbuhl S, Dingemanse J. Metabolism of the dual orexin receptor antagonist ACT-541468, based on microtracer/accelerator mass spectrometry. Curr Drug Metab. 2019;20(4):254–65.

    Article  CAS  Google Scholar 

  11. Gehin M, Wierdak J, Lemoine V, Sidharta PN, Dingemanse J. Effect of increased gastric pH and of a moderate CYP3A4 inducer on the pharmacokinetics of daridorexant, a dual orexin receptor antagonist. Annual Meeting Am Coll Clin Pharmacol. 2021 (abstract 28)

  12. Stockbridge N, Morganroth J, Shah RR, Garnett C. Dealing with global safety issues: was the response to QT-liability of non-cardiac drugs well coordinated? Drug Saf. 2013;36(3):167–82.

    Article  Google Scholar 

  13. Food and Drug Administration Center for Drug Evaluation and Research. Guidance for industry E14 clinical evaluation of QT/QTc interval prolongation and proarrythmic potential for non-antiarrhythmic drugs—questions and answers (R3). 2017. https://www.fda.gov/media/71379/download

  14. Shah RR, Stonier PD. Withdrawal of prenylamine: perspectives on pharmacological, clinical and regulatory outcomes following the first QT-related casualty. Ther Adv Drug Saf. 2018;9(8):475–93.

    Article  CAS  Google Scholar 

  15. Garnett C, Bonate PL, Dang Q, Ferber G, Huang D, Liu J, Mehrotra D, Riley S, Sager P, Tornoe C, Wang Y. Scientific white paper on concentration-QTc modeling. J Pharmacokinet Pharmacodyn. 2018;45(3):383–97.

    Article  CAS  Google Scholar 

  16. Mueller MS, Sidharta PN, Voors-Pette C, Darpo B, Xue H, Dingemanse J. The effect of the glucosylceramide synthase inhibitor lucerastat on cardiac repolarization: results from a thorough QT study in healthy subjects. Orphanet J Rare Dis. 2020;15(1):303.

    Article  Google Scholar 

  17. Murphy PJ, Yasuda S, Nakai K, Yoshinaga T, Hall N, Zhou M, Aluri J, Rege B, Moline M, Ferry J, Darpo B. Concentration-response modeling of ECG data from early-phase clinical studies as an alternative clinical and regulatory approach to assessing QT risk—experience from the development program of lemborexant. J Clin Pharmacol. 2017;57(1):96–104.

    Article  CAS  Google Scholar 

  18. Fridericia LS. The duration of systole in an electrocardiogram in normal humans and in patients with heart disease 1920. Ann Noninvasive Electrocardiol. 2003;8(4):343–51.

    Article  CAS  Google Scholar 

  19. Juif PE, Dingemanse J, Voors-Pette C, Ufer M. Association between vomiting and QT hysteresis: data from a TQT study with the endothelin a receptor antagonist clazosentan. Aaps J. 2020;22(5):103.

    Article  CAS  Google Scholar 

  20. Upton RN, Mould DR. Basic concepts in population modeling, simulation, and model-based drug development: part 3-introduction to pharmacodynamic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2014;3:e88.

    Article  CAS  Google Scholar 

  21. Ferber G. Correcting QT for heart rate when both are affected by a drug. Drug Saf. 2019;42(3):335–7.

    Article  Google Scholar 

  22. Malik M, Garnett C, Hnatkova K, Vicente J, Johannesen L, Stockbridge N. Implications of individual QT/RR profiles-part 1: inaccuracies and problems of population-specific QT/heart rate corrections. Drug Saf. 2019;42(3):401–14.

    Article  Google Scholar 

  23. Malik M, Garnett C, Hnatkova K, Vicente J, Johannesen L, Stockbridge N. Implications of individual QT/RR profiles-part 2: zero QTc/RR correlations do not prove QTc correction accuracy in studies of QTc changes. Drug Saf. 2019;42(3):415–26.

    Article  CAS  Google Scholar 

  24. Taubel J, Ferber G, Fernandes S, Camm AJ. Diurnal profile of the QTc interval following moxifloxacin administration. J Clin Pharmacol. 2019;59(1):35–44.

    Article  Google Scholar 

  25. Ballesta A, Innominato PF, Dallmann R, Rand DA, Levi FA. Systems chronotherapeutics. Pharmacol Rev. 2017;69(2):161–99.

    Article  CAS  Google Scholar 

  26. Gaspar LS, Alvaro AR, Carmo-Silva S, Mendes AF, Relogio A, Cavadas C. The importance of determining circadian parameters in pharmacological studies. Br J Pharmacol. 2019;176(16):2827–47.

    Article  CAS  Google Scholar 

  27. Musiek ES, Fitzgerald GA. Molecular clocks in pharmacology. Handb Exp Pharmacol. 2013;217:243–60.

    Article  CAS  Google Scholar 

  28. Taubel J, Ferber G, Lorch U, Batchvarov V, Savelieva I, Camm AJ. Thorough QT study of the effect of oral moxifloxacin on QTc interval in the fed and fasted state in healthy Japanese and Caucasian subjects. Br J Clin Pharmacol. 2014;77(1):170–9.

    Article  CAS  Google Scholar 

  29. Hoever P, de Haas SL, Dorffner G, Chiossi E, van Gerven JM, Dingemanse J. Orexin receptor antagonism: an ascending multiple-dose study with almorexant. J Psychopharmacol. 2012;26(8):1071–80.

    Article  Google Scholar 

  30. Treiber A, de Kanter R, Roch C, Gatfield J, Boss C, von Raumer M, Schindelholz B, Muehlan C, van Gerven J, Jenck F. The use of physiology-based pharmacokinetic and pharmacodynamic modeling in the discovery of the dual orexin receptor antagonist ACT-541468. J Pharmacol Exp Ther. 2017;362(3):489–503.

    Article  CAS  Google Scholar 

  31. Muehlan C, Zuiker R, Peeters P, Rowles R, Dingemanse J. Pharmacokinetics and pharmacodynamics of the dual orexin receptor antagonist daridorexant in japanese and caucasian subjects. J Clin Psychopharmacol. 2020;40(2):157–66.

    Article  CAS  Google Scholar 

  32. Bouvy JC, Koopmanschap MA, Shah RR, Schellekens H. The cost-effectiveness of drug regulation: the example of thorough QT/QTc studies. Clin Pharmacol Ther. 2012;91:281–8.

    Article  CAS  Google Scholar 

  33. Wiśniowska B, Tylutki Z, Polak S. Thorough QT (TQT) studies: concordance with torsadogenesis and an evolving cardiac safety testing paradigm. Drug Discov Today. 2017;22:1460–5.

    Article  Google Scholar 

  34. Gintant G, Sager PT, Stockbridge N. Evolution of strategies to improve preclinical cardiac safety testing. Nat Rev Drug Discov. 2016;15:457–71.

    Article  CAS  Google Scholar 

  35. Strauss DG, Wu WW, Li Z, Koerner J, Garnett C. Translational models and tools to reduce clinical trials and improve regulatory decision making for QTc and proarrhythmia risk (ICH E14/S7B Updates). Clin Pharmacol Ther. 2021;109:319–33.

    Article  Google Scholar 

  36. Muehlan C, Brooks S, Zuiker R, van Gerven J, Dingemanse J. Multiple-dose clinical pharmacology of ACT-541468, a novel dual orexin receptor antagonist, following repeated-dose morning and evening administration. Eur Neuropsychopharmacol. 2019;29(7):847–57.

    Article  CAS  Google Scholar 

  37. Zammit G, Seboek Kinter D, Bassetti C, Leger D, Hermann V, Pain S, Roth T. Daridorexant (ACT-541468), a dual orexin receptor antagonist for the treatment of insomnia disorder: double-blind, randomized, phase 3 studies for efficacy and safety in adult and elderly patients. Sleep. 2020;43(Suppl1):A199–200.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jiří Liška and Dr. Luboš Janů (CEPHA s.r.o., Pilsen, Czech Republic) for the clinical conduct of the study, Dr. Susanne Globig and Giancarlo Sabattini (Department of Preclinical Pharmacokinetics and Metabolism, Idorsia Pharmaceuticals Ltd) for the bioanalytical analysis, Dr. Eric Ertel (Department of Pharmacology, Cardiovascular and Pulmonary, Idorsia Pharmaceuticals Ltd) for the preclinical studies, Biotrial (Rennes, France) for the Holter ECG extraction and reading, Kristyna Horakova and Kateřina Mertlíková (Aixial s.r.o., Brno, Czech Republic) for study monitoring, and Martin Wojcik (Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd) for study project management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper Dingemanse.

Ethics declarations

Funding

This study was sponsored by Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.

Conflict of interest

All authors were employees and/or shareholders of Idorsia Pharmaceuticals Ltd at the time the research was performed. Daridorexant is currently in clinical development by Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.

Availability of data and material

This study was registered on clinicaltrials.gov (NCT04250506). Data are available upon request from the corresponding author.

Ethics approval

The study protocol was approved by the Czech health authority (SUKL) as well as an Independent Ethics Committee (Ethics Committee of CEPHA s.r.o., Pilsen, Czech Republic). It was conducted in full accordance with the principles of the Declaration of Helsinki and ICH good clinical practice guidelines.

Consent to participate

Each study subject provided written informed consent prior to any treatment and study-related assessment.

Author contributions

US, CM, JD, and MU designed the study. AH and AK performed the concentration-QT modeling. US analyzed the data and drafted the manuscript. All authors reviewed the manuscript and approved its submission.

Consent for publication

Not applicable.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilling, U., Henrich, A., Muehlan, C. et al. Impact of Daridorexant, a Dual Orexin Receptor Antagonist, on Cardiac Repolarization Following Bedtime Dosing: Results from a Thorough QT Study Using Concentration-QT Analysis. Clin Drug Investig 41, 711–721 (2021). https://doi.org/10.1007/s40261-021-01062-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-021-01062-1

Navigation