Skip to main content
Log in

Extending the Human Papillomavirus Vaccination Programme to Include Males in High-Income Countries: A Systematic Review of the Cost-Effectiveness Studies

  • Systematic Review
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objectives

Giving the human papillomavirus (HPV) vaccination to females has been shown to be cost-effective in most countries. The epidemiological evidence and economic burden of HPV-related diseases have gradually been shown to be gender neutral. Randomized clinical trials report high efficacy, immunogenicity and safety of the HPV vaccine in males aged 16–26 years. Some pioneering countries extended their HPV vaccination programme to include males, regardless of the cost-effectiveness analysis results. Nevertheless, decision makers need evidence provided by modelling and economic studies to justify the funding of mass vaccination. This systematic review aims to assess the cost-effectiveness of extending the HPV vaccination programme to include males living in high-income countries.

Methods

A systematic review of the cost-effectiveness analyses of HPV vaccination in males was performed. Data were extracted and analysed using a checklist adapted from the Consolidated Health Economic Evaluation Reporting Standards Statement.

Results

Seventeen studies and 12 underlying mathematical models were identified. Model filiation showed evolution in time from aggregate models (static and dynamic) to individual-based models. When considering the health outcomes HPV vaccines are licensed for, regardless of modelling approaches and assumptions, extending vaccinations to males is rarely found to be cost-effective in heterosexual populations. Cost-effectiveness ratios become more attractive when all HPV-related diseases are considered and when vaccine coverage in females is below 40 %.

Conclusion

Targeted vaccination of men who have sex with men (MSM) seems to be the best cost-effectiveness option. The feasibility of this strategy is still an open question, since early identification of this specific population remains difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baseman JG, Koutsky LA. The epidemiology of human papillomavirus infections. J. Clin. Virol. 2005;32(Supplement):16–24.

    Article  Google Scholar 

  2. Schiffman M, Kjaer SK. Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr. 2003;31:14–9.

    Article  PubMed  Google Scholar 

  3. IARC Working Group on the Evaluation of Carcinogenic. Risks to Humans. Human papillomaviruses. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2007;90:1–636.

    Google Scholar 

  4. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30(Suppl 5):F12–23.

    Article  PubMed  Google Scholar 

  5. De Vuyst H, Clifford GM, Nascimento MC, Madeleine MM, Franceschi S. Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. Int. J. Cancer. 2009;124:1626–36.

    Article  PubMed  Google Scholar 

  6. Gillison M. HPV and its effect on head and neck cancer prognosis. Clin. Adv. Hematol. Oncol. 2010;8:680–2.

    PubMed  Google Scholar 

  7. Giuliano AR, Tortolero-Luna G, Ferrer E, Burchell AN, de Sanjose S, Kjaer SK, et al. Epidemiology of human papillomavirus infection in men, cancers other than cervical and benign conditions. Vaccine. 2008;26(Suppl 10):K17–28.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Harper DM. Currently approved prophylactic HPV vaccines. Expert Rev. Vaccines. 2009;8:1663–79.

    Article  CAS  PubMed  Google Scholar 

  9. IARC Working Group. Primary end-points for prophylactic HPV vaccine trials. Geneva: World Health Organisation; 2013 Sep.

    Google Scholar 

  10. Schiller JT, Castellsagué X, Garland SM. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine. 2012;30(Supplement 5):F123–38.

    Article  CAS  PubMed  Google Scholar 

  11. Lehtinen M, Dillner J. Clinical trials of human papillomavirus vaccines and beyond. Nat. Rev. Clin. Oncol. 2013;10:400–10.

    Article  CAS  PubMed  Google Scholar 

  12. Jit M, Brisson M. Modelling the epidemiology of infectious diseases for decision analysis: a primer. PharmacoEconomics. 2011;29:371–86.

    Article  PubMed  Google Scholar 

  13. Canfell K, Chesson H, Kulasingam SL, Berkhof J, Diaz M, Kim JJ. Modeling preventative strategies against human papillomavirus-related disease in developed countries. Vaccine. 2012;30(Suppl 5):F157–67.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Markowitz LE, Tsu V, Deeks SL, Cubie H, Wang SA, Vicari AS, et al. Human papillomavirus vaccine introduction—the first five years. Vaccine. 2012;30(Suppl 5):F139–48.

    Article  PubMed  Google Scholar 

  15. Lehtinen M, Paavonen J. Impact of human papillomavirus vaccination depends on effective vaccination strategy. Int. J. Cancer. 2009;125:1490–1.

    Article  CAS  PubMed  Google Scholar 

  16. Stanley M. Perspective: vaccinate boys too. Nature. 2012;488:S10.

    Article  CAS  PubMed  Google Scholar 

  17. Chesson HW, Ekwueme DU, Saraiya M, Watson M, Lowy DR, Markowitz LE. Estimates of the annual direct medical costs of the prevention and treatment of disease associated with human papillomavirus in the United States. Vaccine. 2012;30:6016–9.

    Article  PubMed  Google Scholar 

  18. Ali H, Donovan B, Wand H, Read TRH, Regan DG, Grulich AE, et al. Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. BMJ. 2013;346:f2032–f2032.

    Article  PubMed  Google Scholar 

  19. Kreuter A, Wieland U. Human papillomavirus-associated diseases in HIV-infected men who have sex with men. Curr. Opin. Infect. Dis. 2009;22:109–14.

    Article  PubMed  Google Scholar 

  20. Palefsky JM. Human papillomavirus-related disease in men: not just a women’s issue. J. Adolesc. Health. 2010;46:S12–9.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hillman RJ, Giuliano AR, Palefsky JM, Goldstone S, Moreira ED, Vardas E, et al. Immunogenicity of the quadrivalent human papillomavirus (type 6/11/16/18) vaccine in males 16 to 26 years old. Clin. Vaccine Immunol. 2012;19:261–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Luyten J, Engelen B, Beutels P. The sexual ethics of HPV vaccination for boys. HEC Forum. 2014;26:27–42.

    Article  PubMed  Google Scholar 

  23. Marty R, Roze S, Bresse X, Largeron N, Smith-Palmer J. Estimating the clinical benefits of vaccinating boys and girls against HPV-related diseases in Europe. BMC Cancer. 2013;13:10.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Centers for Disease Control and Prevention (CDC). Recommendations on the use of quadrivalent human papillomavirus vaccine in males—Advisory Committee on Immunization Practices (ACIP), MMWR Morb. Mortal. Wkly. Rep. 2011;2011(60):1705–8.

  25. Wilkinson E. Australia leads way on HPV vaccination in boys. Lancet Infect. Dis. 2012;12:831–2.

    Article  PubMed  Google Scholar 

  26. Quinn S, Goldman RD. Human papillomavirus vaccination for boys. Can. Fam. Physician. 2015;61:43–6.

    PubMed Central  PubMed  Google Scholar 

  27. Impfkommission S (STIKO). Empfehlung der sächsischen Impfkommission zur Durchführung von Schutzimpfungen im Freistaat Sachsen. 2014. http://www.gesunde.sachsen.de/download/lua/LUA_HM_Impfempfehlungen_E1.pdf

  28. Seto K, Marra F, Raymakers A, Marra CA. The cost effectiveness of human papillomavirus vaccines: a systematic review. Drugs. 2012;72:715–43.

    Article  PubMed  Google Scholar 

  29. Jiang Y, Gauthier A, Postma MJ, Ribassin-Majed L, Largeron N, Bresse X. A critical review of cost-effectiveness analyses of vaccinating males against human papillomavirus. Hum. Vaccines Immunother. 2013;9:2285–95.

    Article  Google Scholar 

  30. Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int. J. Surg. 2010;8:336–41.

    Article  PubMed  Google Scholar 

  31. Drummond MF, Richardson WS, O’Brien BJ, Levine M, Heyland D. Users’ guides to the medical literature. XIII. How to use an article on economic analysis of clinical practice. A. Are the results of the study valid? Evidence-Based Medicine Working Group. JAMA. 1997;277:1552–7.

    Article  CAS  PubMed  Google Scholar 

  32. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS)—explanation and elaboration: a report of the ISPOR Health Economic Evaluation Publication Guidelines Good Reporting Practices Task Force. Value Health. 2013;16:231–50.

    Article  PubMed  Google Scholar 

  33. Shi L, Hodges M, Drummond M, Ahn J, Li SC, Hu S, et al. Good research practices for measuring drug costs in cost-effectiveness analyses: an international perspective: the ISPOR Drug Cost Task Force report—part VI. Value Health. 2010;13:28–33.

    Article  PubMed  Google Scholar 

  34. National Board of Health, Danish Centre for Health Technology Assessment. Reduction in the risk of cervical cancer by vaccination against human papillomavirus (HPV)—a health technology assessment. Copenhagen: National Board of Health, Danish Centre for Health Technology Assessment; 2007.

  35. Elbasha EH, Dasbach EJ, Insinga RP. A multi-type HPV transmission model. Bull. Math. Biol. 2008;70:2126–76.

    Article  PubMed  Google Scholar 

  36. Comité sur l’immunisation du Québec, HPV Ad Hoc Scientific Committee. HPV vaccination in Québec: knowledge update and expert panel proposals [Internet]. Institut national de santé publique du Québec; Available from: http://www.santecom.qc.ca/Bibliothequevirtuelle/INSPQ/9782550687573.pdf

  37. Olsen J, Jepsen MR. Human papillomavirus transmission and cost-effectiveness of introducing quadrivalent HPV vaccination in Denmark. Int. J. Technol. Assess. Health Care. 2010;26:183–91.

    Article  PubMed  Google Scholar 

  38. Elbasha EH, Dasbach EJ, Insinga RP. Model for assessing human papillomavirus vaccination strategies. Emerg. Infect. Dis. 2007;13:28–41.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Laprise J-F, Drolet M, Boily M-C, Jit M, Sauvageau C, Franco EL, et al. Comparing the cost-effectiveness of two- and three-dose schedules of human papillomavirus vaccination: a transmission-dynamic modelling study. Vaccine. 2014;32:5845–53.

    Article  PubMed  Google Scholar 

  40. Kulasingam S, Connelly L, Conway E, Hocking JS, Myers E, Regan DG, et al. A cost-effectiveness analysis of adding a human papillomavirus vaccine to the Australian National Cervical Cancer Screening Program. Sex. Health. 2007;4:165–75.

    Article  PubMed  Google Scholar 

  41. Kulasingam SL, Myers ER. Potential health and economic impact of adding a human papillomavirus vaccine to screening programs. JAMA. 2003;290:781–9.

    Article  PubMed  Google Scholar 

  42. Myers ER, Green S, Lipkus I. Patient preferences for health states related to HPV infection: visual analogue scales versus time trade-off elicitation. Proceedings of the 21st International Papillomavirus Conference; Mexico City; 2004.

  43. Regan DG, Philp DJ, Hocking JS, Law MG. Modelling the population-level impact of vaccination on the transmission of human papillomavirus type 16 in Australia. Sex. Health. 2007;4:147–63.

    Article  PubMed  Google Scholar 

  44. Taira AV, Neukermans CP, Sanders GD. Evaluating human papillomavirus vaccination programs. Emerg. Infect. Dis. 2004;10:1915–23.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Sanders GD, Taira AV. Cost-effectiveness of a potential vaccine for human papillomavirus. Emerg. Infect. Dis. 2003;9:37–48.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Myers ER, McCrory DC, Nanda K, Bastian L, Matchar DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am. J. Epidemiol. 2000;151:1158–71.

    Article  CAS  PubMed  Google Scholar 

  47. Zechmeister I, de Blasio BF, Garnett G, Neilson AR, Siebert U. Cost-effectiveness analysis of human papillomavirus-vaccination programs to prevent cervical cancer in Austria. Vaccine. 2009;27:5133–41.

    Article  PubMed  Google Scholar 

  48. Neilson A, Freiesleben de Blasio B. Economic evaluation of the human papillomavirus (HPV)-vaccination in Norway. Oslo: Norwegian Knowledge Centre for the Health Services; 2007.

  49. Garnett GP, Kim JJ, French K, Goldie SJ. Chapter 21: Modelling the impact of HPV vaccines on cervical cancer and screening programmes. Vaccine. 2006;24 Suppl 3:S3/178–86.

  50. Jit M, Choi YH, Edmunds WJ. Economic evaluation of human papillomavirus vaccination in the United Kingdom. BMJ. 2008;337:a769.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Choi YH, Jit M, Gay N, Cox A, Garnett G, Edmunds WJ. Developing a model of the transmission of HPV and development of HPV-related diseases. 24th International Papillomavirus Conference Clinical Workshop; Beijing; 2007.

  52. Choi YH, Jit M, Gay N, Cox A, Garnett GP, Edmunds WJ. Transmission dynamic modelling of the impact of human papillomavirus vaccination in the United Kingdom. Vaccine. 2010;28:4091–102.

    Article  PubMed  Google Scholar 

  53. Usher C, Tilson L, Olsen J, Jepsen M, Walsh C, Barry M. Cost-effectiveness of human papillomavirus vaccine in reducing the risk of cervical cancer in Ireland due to HPV types 16 and 18 using a transmission dynamic model. Vaccine. 2008;26:5654–61.

    Article  PubMed  Google Scholar 

  54. Pearson AL, Kvizhinadze G, Wilson N, Smith M, Canfell K, Blakely T. Is expanding HPV vaccination programs to include school-aged boys likely to be value-for-money: a cost-utility analysis in a country with an existing school-girl program. BMC Infect. Dis. 2014;14:351.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Elbasha EH, Dasbach EJ. Impact of vaccinating boys and men against HPV in the United States. Vaccine. 2010;28:6858–67.

    Article  PubMed  Google Scholar 

  56. Burger EA, Sy S, Nygård M, Kristiansen IS, Kim JJ. Prevention of HPV-related cancers in Norway: cost-effectiveness of expanding the HPV vaccination program to include pre-adolescent boys. PloS One. 2014;9:e89974.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Chesson HW, Ekwueme DU, Saraiya M, Dunne EF, Markowitz LE. The cost-effectiveness of male HPV vaccination in the United States. Vaccine. 2011;29:8443–50.

    Article  PubMed  Google Scholar 

  58. Kim JJ, Goldie SJ. Cost effectiveness analysis of including boys in a human papillomavirus vaccination programme in the United States. BMJ. 2009;339:b3884.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Blakely T, Kvizhinadze G, Karvonen T, Pearson AL, Smith M, Wilson N. Cost-effectiveness and equity impacts of three HPV vaccination programmes for school-aged girls in New Zealand. Vaccine. 2014;32:2645–56.

    Article  PubMed  Google Scholar 

  60. Brisson M, van de Velde N, Franco EL, Drolet M, Boily M-C. Incremental impact of adding boys to current human papillomavirus vaccination programs: role of herd immunity. J. Infect. Dis. 2011;204:372–6.

    Article  PubMed  Google Scholar 

  61. Chesson HW, Ekwueme DU, Saraiya M, Markowitz LE. Cost-effectiveness of human papillomavirus vaccination in the United States. Emerg. Infect. Dis. 2008;14:244–51.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Goldhaber-Fiebert JD, Stout NK, Ortendahl J, Kuntz KM, Goldie SJ, Salomon JA. Modeling human papillomavirus and cervical cancer in the United States for analyses of screening and vaccination. Popul. Health Metr. 2007;5:11.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Kim JJ, Goldie SJ. Health and economic implications of HPV vaccination in the United States. N. Engl. J. Med. 2008;359:821–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Kim JJ, Kuntz KM, Stout NK, Mahmud S, Villa LL, Franco EL, et al. Multiparameter calibration of a natural history model of cervical cancer. Am. J. Epidemiol. 2007;166:137–50.

    Article  PubMed  Google Scholar 

  65. Kim JJ, Andres-Beck B, Goldie SJ. The value of including boys in an HPV vaccination programme: a cost-effectiveness analysis in a low-resource setting. Br. J. Cancer. 2007;97:1322–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Goldie SJ, Kim JJ, Kobus K, Goldhaber-Fiebert JD, Salomon J, O’shea MKH, et al. Cost-effectiveness of HPV 16, 18 vaccination in Brazil. Vaccine. 2007;25:6257–70.

  67. Van de Velde N, Brisson M, Boily M-C. Understanding differences in predictions of HPV vaccine effectiveness: a comparative model-based analysis. Vaccine. 2010;28:5473–84.

    Article  PubMed  Google Scholar 

  68. Van de Velde N, Boily M-C, Drolet M, Franco EL, Mayrand M-H, Kliewer EV, et al. Population-level impact of the bivalent, quadrivalent, and nonavalent human papillomavirus vaccines: a model-based analysis. J. Natl. Cancer Inst. 2012;104:1712–23.

    Article  PubMed  Google Scholar 

  69. Kim JJ. Targeted human papillomavirus vaccination of men who have sex with men in the USA: a cost-effectiveness modelling analysis. Lancet Infect. Dis. 2010;10:845–52.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Deshmukh AA, Chiao EY, Das P, Cantor SB. Clinical effectiveness and cost-effectiveness of quadrivalent human papillomavirus vaccination in HIV-negative men who have sex with men to prevent recurrent high-grade anal intraepithelial neoplasia. Vaccine. 2014;32:6941–7.

    Article  PubMed  Google Scholar 

  71. Marra F, Cloutier K, Oteng B, Marra C, Ogilvie G. Effectiveness and cost effectiveness of human papillomavirus vaccine: a systematic review. PharmacoEconomics. 2009;27:127–47.

    Article  PubMed  Google Scholar 

  72. Jit M, Brisson M, Laprise J-F, Choi YH. Comparison of two dose and three dose human papillomavirus vaccine schedules: cost effectiveness analysis based on transmission model. BMJ. 2015;350:g7584.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Postma MJ, Jit M, Rozenbaum MH, Standaert B, Tu H-A, Hutubessy RC. Comparative review of three cost-effectiveness models for rotavirus vaccines in national immunization programs; a generic approach applied to various regions in the world. BMC Med. 2011;9:84.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Olsen J, Jørgensen TR. Revisiting the cost-effectiveness of universal HPV-vaccination in Denmark accounting for all potentially vaccine preventable HPV-related diseases in males and females. Cost Eff. Resour. Alloc. 2015;13:4.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Romanowski B, Schwarz TF, Ferguson LM, Ferguson M, Peters K, Dionne M, et al. Immune response to the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose or 3-dose schedule up to 4 years after vaccination: results from a randomized study. Hum. Vaccines Immunother. 2014;10:1155–65.

    Article  Google Scholar 

  76. Bogaards JA, Kretzschmar M, Xiridou M, Meijer CJLM, Berkhof J, Wallinga J. Sex-specific immunization for sexually transmitted infections such as human papillomavirus: insights from mathematical models. PLoS Med. 2011;8:e1001147.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Smith MA, Canfell K. Incremental benefits of male HPV vaccination: accounting for inequality in population uptake. PLoS ONE. 2014;9:e101048.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Joura EA, Giuliano AR, Iversen O-E, Bouchard C, Mao C, Mehlsen J, et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 2015;372:711–23.

    Article  CAS  PubMed  Google Scholar 

  79. US Food and Drug Administration. FDA approves Gardasil 9 for prevention of certain cancers caused by five additional types of HPV [Internet]. 2014 [cited 2015 Mar 27]. Available from: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm426485.htm

  80. Petrosky E, Bocchini JA, Hariri S, Chesson H, Curtis CR, Saraiya M, et al. Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the Advisory Committee on Immunization Practices. MMWR Morb. Mortal. Wkly. Rep. 2015;64:300–4.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Donna Willis, MD, MPH, Johns Hopkins Medical School, Baltimore, USA, for her help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed-Béchir Ben Hadj Yahia.

Ethics declarations

Funding

No sources of funding were used in the preparation of this manuscript.

Conflict of Interest

Mohamed-Béchir Ben Hadj Yahia, Anaïs Jouin-Bortolotti and Benoît Dervaux have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1865 kb)

Supplementary material 2 (XLSX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Hadj Yahia, MB., Jouin-Bortolotti, A. & Dervaux, B. Extending the Human Papillomavirus Vaccination Programme to Include Males in High-Income Countries: A Systematic Review of the Cost-Effectiveness Studies. Clin Drug Investig 35, 471–485 (2015). https://doi.org/10.1007/s40261-015-0308-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-015-0308-4

Keywords

Navigation