Skip to main content

Advertisement

Log in

Targeting Leukocyte Trafficking in Inflammatory Bowel Disease

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

In the last two decades, understanding of inflammatory bowel disease (IBD) immunopathogenesis has expanded considerably. Histopathological examination of the intestinal mucosa in IBD demonstrates the presence of a chronic inflammatory cell infiltrate. Research has focused on identifying mechanisms of immune cell trafficking to the gastrointestinal tract that may represent effective gut-selective targets for IBD therapy whilst avoiding systemic immunosuppression that may be associated with off-target adverse effects such as infection and malignancy. Integrins are cell surface receptors that can bind to cellular adhesion molecules to mediate both leukocyte homing and retention. In 2014, Vedolizumab (Entyvio®) was the first anti-integrin (anti-α4ß7 monoclonal antibody) treatment to be approved for use in IBD. Several other anti-integrin therapies are currently in advanced stages of development, including novel orally administered small-molecule drugs. Drugs targeting alternative trafficking mechanisms such as mucosal addressin cellular adhesion molecule-1 and sphingosine-1-phosphate receptors are also being evaluated. Here, we summarise key established and emerging therapies targeting leukocyte trafficking that may play an important role in realising the goal of stratified precision medicine in IBD care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Souza HSP, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13(1):13–27. https://doi.org/10.1038/nrgastro.2015.186.

    Article  CAS  PubMed  Google Scholar 

  2. Lamb CA, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019;68(Supplement_3):S1–106. https://doi.org/10.1136/gutjnl-2019-318484.

    Article  PubMed  Google Scholar 

  3. Dart RJ, et al. Results of the Seventh Scientific Workshop of ECCO: Precision Medicine in IBD—Challenges and Future Directions. J Crohns Colitis. 2021. https://doi.org/10.1093/ecco-jcc/jjab049.

    Article  PubMed  Google Scholar 

  4. Maynard CL, Weaver CT. Intestinal effector T cells in health and disease. Immunity. 2009;31(3):389–400. https://doi.org/10.1016/j.immuni.2009.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feakins RM. Inflammatory bowel disease biopsies: updated British Society of Gastroenterology reporting guidelines. J Clin Pathol. 2013;66(12):1005–26. https://doi.org/10.1136/jclinpath-2013-201885.

    Article  PubMed  Google Scholar 

  6. Brandtzaeg P, et al. Terminology: nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol. 2008;1(1):31–7. https://doi.org/10.1038/mi.2007.9.

    Article  CAS  PubMed  Google Scholar 

  7. von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003;3(11):867–78. https://doi.org/10.1038/nri1222.

    Article  CAS  Google Scholar 

  8. Ley K, et al. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678–89. https://doi.org/10.1038/nri2156.

    Article  CAS  PubMed  Google Scholar 

  9. Butcher EC. Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell. 1991;67(6):1033–6. https://doi.org/10.1016/0092-8674(91)90279-8.

    Article  CAS  PubMed  Google Scholar 

  10. Simon SI, et al. Neutrophil tethering on E-selectin activates beta 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J Immunol. 2000;164(8):4348–58. https://doi.org/10.4049/jimmunol.164.8.4348.

    Article  CAS  PubMed  Google Scholar 

  11. da Costa Martins P, et al. P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler Thrombos Vasc Biol. 2007;27(5):1023–9. https://doi.org/10.1161/ATVBAHA.107.140442.

    Article  CAS  Google Scholar 

  12. Rivera-Nieves J, et al. Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis. J Exp Med. 2006;203(4):907–17. https://doi.org/10.1084/jem.20052530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eriksson EE, et al. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med. 2001;194(2):205–18. https://doi.org/10.1084/jem.194.2.205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arbonés ML, et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity. 1994;1(4):247–60. https://doi.org/10.1016/1074-7613(94)90076-0.

    Article  PubMed  Google Scholar 

  15. Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987;48(4):549–54. https://doi.org/10.1016/0092-8674(87)90233-9.

    Article  CAS  PubMed  Google Scholar 

  16. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87. https://doi.org/10.1016/S0092-8674(02)00971-6.

    Article  CAS  PubMed  Google Scholar 

  17. Alberts B, et al. Cells in their social context: cell junctions and the extracellular, in matrix, molecular biology of the cell. New York: Garland Science; 2014. p. 1035–90.

    Google Scholar 

  18. Lamb CA, et al. Gut-selective integrin-targeted therapies for inflammatory bowel disease. J Crohn’s Colitis. 2018;12(Supplement_2):S653–68. https://doi.org/10.1093/ecco-jcc/jjy060.

    Article  Google Scholar 

  19. Beglova N, et al. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat Struct Biol. 2002;9(4):282–7. https://doi.org/10.1038/nsb779.

    Article  CAS  PubMed  Google Scholar 

  20. Hogg N, Patzak I, Willenbrock F. The insider’s guide to leukocyte integrin signalling and function. Nat Rev Immunol. 2011;11(6):416–26. https://doi.org/10.1038/nri2986.

    Article  CAS  PubMed  Google Scholar 

  21. Takagi J, et al. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110(5):599–611. https://doi.org/10.1016/S0092-8674(02)00935-2.

    Article  CAS  PubMed  Google Scholar 

  22. Springer TA, Wang J-H. The three-dimensional structure of integrins and their ligands, and conformational regulation of cell adhesion, in advances in protein chemistry. Academic Press; 2004. p. 29–63.

    Google Scholar 

  23. Shimaoka M, et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell. 2003;112(1):99–111. https://doi.org/10.1016/S0092-8674(02)01257-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Evans R, et al. The integrin LFA-1 signals through ZAP-70 to regulate expression of high-affinity LFA-1 on T lymphocytes. Blood. 2011;117(12):3331–42. https://doi.org/10.1182/blood-2010-06-289140.

    Article  CAS  PubMed  Google Scholar 

  25. Constantin G, et al. Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity. 2000;13(6):759–69. https://doi.org/10.1016/s1074-7613(00)00074-1.

    Article  CAS  PubMed  Google Scholar 

  26. Carrasco YR, et al. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity. 2004;20(5):589–99. https://doi.org/10.1016/s1074-7613(04)00105-0.

    Article  CAS  PubMed  Google Scholar 

  27. Dustin ML. The cellular context of T cell signaling. Immunity. 2009;30(4):482–92. https://doi.org/10.1016/j.immuni.2009.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Briskin M, et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol. 1997;151(1):97–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Erle DJ, et al. Expression and function of the MAdCAM-1 receptor, integrin alpha 4 beta 7, on human leukocytes. J Immunol. 1994;153(2):517–28.

    Article  CAS  PubMed  Google Scholar 

  30. Rott LS, et al. A fundamental subdivision of circulating lymphocytes defined by adhesion to mucosal addressin cell adhesion molecule-1. Comparison with vascular cell adhesion molecule-1 and correlation with beta 7 integrins and memory differentiation. J Immunol. 1996;156(10):3727–36.

    Article  CAS  PubMed  Google Scholar 

  31. Gorfu G, Rivera-Nieves J, Ley K. Role of beta7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med. 2009;9(7):836–50. https://doi.org/10.2174/156652409789105525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Newham P, et al. Alpha4 integrin binding interfaces on VCAM-1 and MAdCAM-1. Integrin binding footprints identify accessory binding sites that play a role in integrin specificity. J Biol Chem. 1997;272(31):19429–40. https://doi.org/10.1074/jbc.272.31.19429.

    Article  CAS  PubMed  Google Scholar 

  33. Iwata M, et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity. 2004;21(4):527–38. https://doi.org/10.1016/j.immuni.2004.08.011.

    Article  CAS  PubMed  Google Scholar 

  34. Kunkel EJ, et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med. 2000;192(5):761–8. https://doi.org/10.1084/jem.192.5.761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Papadakis KA, et al. CCR9-Positive lymphocytes and thymus-expressed chemokine distinguish small bowel from colonic Crohn’s disease. Gastroenterology. 2001;121(2):246–54. https://doi.org/10.1053/gast.2001.27154.

    Article  CAS  PubMed  Google Scholar 

  36. Cepek KL, et al. Integrin alpha E beta 7 mediates adhesion of T lymphocytes to epithelial cells. J Immunol. 1993;150(8):3459.

    Article  CAS  PubMed  Google Scholar 

  37. Kilshaw PJ. Alpha E beta 7. Mol Pathol. 1999;52(4):203–7. https://doi.org/10.1136/mp.52.4.203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schön MP, et al. Mucosal T lymphocyte numbers are selectively reduced in integrin alpha E (CD103)-deficient mice. J Immunol. 1999;162(11):6641–9.

    Article  PubMed  Google Scholar 

  39. Taraszka KS, et al. Molecular basis for leukocyte integrin alpha(E)beta(7) adhesion to epithelial (E)-cadherin. J Exp Med. 2000;191(9):1555–67. https://doi.org/10.1084/jem.191.9.1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cerf-Bensussan N, et al. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur J Immunol. 1987;17(9):1279–85. https://doi.org/10.1002/eji.1830170910.

    Article  CAS  PubMed  Google Scholar 

  41. Higgins JM, et al. Direct and regulated interaction of integrin alphaEbeta7 with E-cadherin. J Cell Biol. 1998;140(1):197–210. https://doi.org/10.1083/jcb.140.1.197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sarnacki S, et al. Enhancement of CD3-induced activation of human intestinal intraepithelial lymphocytes by stimulation of the beta 7-containing integrin defined by HML-1 monoclonal antibody. Eur J Immunol. 1992;22(11):2887–92. https://doi.org/10.1002/eji.1830221120.

    Article  CAS  PubMed  Google Scholar 

  43. Gebhardt T, Mackay LK. Local immunity by tissue-resident CD8(+) memory T cells. Front Immunol. 2012;3:340–340. https://doi.org/10.3389/fimmu.2012.00340.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lim SP, Leung E, Krissansen GW. The beta7 integrin gene (Itgb-7) promoter is responsive to TGF-beta1: defining control regions. Immunogenetics. 1998;48(3):184–95. https://doi.org/10.1007/s002510050422.

    Article  CAS  PubMed  Google Scholar 

  45. Robinson PW, et al. Studies on transcriptional regulation of the mucosal T-cell integrin αEβ7 (CD103). Immunology. 2001;103(2):146–54. https://doi.org/10.1046/j.1365-2567.2001.01232.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lamb CA, et al. αEβ7 Integrin Identifies Subsets of Pro-Inflammatory Colonic CD4+ T Lymphocytes in Ulcerative Colitis. J Crohns Colitis. 2017;11(5):610–20. https://doi.org/10.1093/ecco-jcc/jjw189.

    Article  PubMed  Google Scholar 

  47. Babyatsky MW, Rossiter G, Podolsky DK. Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology. 1996;110(4):975–84. https://doi.org/10.1053/gast.1996.v110.pm8613031.

    Article  CAS  PubMed  Google Scholar 

  48. Ichikawa R, et al. AlphaE integrin expression is increased in the ileum relative to the colon and unaffected by inflammation. J Crohn’s Colitis. 2018;12(10):1191–9. https://doi.org/10.1093/ecco-jcc/jjy084.

    Article  Google Scholar 

  49. Brandtzaeg P, et al. Lymphoepithelial interactions in the mucosal immune system. Gut. 1988;29(8):1116–30. https://doi.org/10.1136/gut.29.8.1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gavin MA, et al. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat Immunol. 2002;3(1):33–41. https://doi.org/10.1038/ni743.

    Article  CAS  PubMed  Google Scholar 

  51. Zelenika D, et al. Regulatory T cells overexpress a subset of Th2 gene transcripts. J Immunol. 2002;168(3):1069–79. https://doi.org/10.4049/jimmunol.168.3.1069.

    Article  CAS  PubMed  Google Scholar 

  52. Lehmann J, et al. Expression of the integrin alpha E beta 7 identifies unique subsets of CD25+ as well as CD25-regulatory T cells. Proc Natl Acad Sci USA. 2002;99(20):13031–6. https://doi.org/10.1073/pnas.192162899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao D, et al. In vivo-activated CD103+CD4+ regulatory T cells ameliorate ongoing chronic graft-versus-host disease. Blood. 2008;112(5):2129–38. https://doi.org/10.1182/blood-2008-02-140277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huehn J, et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med. 2004;199(3):303–13. https://doi.org/10.1084/jem.20031562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lúdvíksson BR, et al. Administration of mAb against alpha E beta 7 prevents and ameliorates immunization-induced colitis in IL-2-/- mice. J Immunol. 1999;162(8):4975–82.

    Article  PubMed  Google Scholar 

  56. Picarella D, et al. Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells. J Immunol. 1997;158(5):2099–106.

    Article  CAS  PubMed  Google Scholar 

  57. Madara JL, et al. Characterization of spontaneous colitis in cotton-top tamarins (Saguinus oedipus) and its response to sulfasalazine. Gastroenterology. 1985;88(1 Pt 1):13–9. https://doi.org/10.1016/s0016-5085(85)80126-8.

    Article  CAS  PubMed  Google Scholar 

  58. Podolsky DK, et al. Attenuation of colitis in the cotton-top tamarin by anti-alpha 4 integrin monoclonal antibody. J Clin Investig. 1993;92(1):372–80. https://doi.org/10.1172/jci116575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hesterberg PE, et al. Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7. Gastroenterology. 1996;111(5):1373–80. https://doi.org/10.1053/gast.1996.v111.pm8898653.

    Article  CAS  PubMed  Google Scholar 

  60. Yednock TA, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature. 1992;356(6364):63–6. https://doi.org/10.1038/356063a0.

    Article  CAS  PubMed  Google Scholar 

  61. Kent SJ, et al. A monoclonal antibody to alpha 4 integrin suppresses and reverses active experimental allergic encephalomyelitis. J Neuroimmunol. 1995;58(1):1–10. https://doi.org/10.1016/0165-5728(94)00165-k.

    Article  CAS  PubMed  Google Scholar 

  62. Engelhardt B, et al. The development of experimental autoimmune encephalomyelitis in the mouse requires alpha4-integrin but not alpha4beta7-integrin. J Clin Investig. 1998;102(12):2096–105. https://doi.org/10.1172/JCI4271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bauer M, et al. β integrins differentially control extravasation of inflammatory cell subsets into the CNS during autoimmunity. Proc Natl Acad Sci. 2009;106(6):1920. https://doi.org/10.1073/pnas.0808909106.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Léger OJ, et al. Humanization of a mouse antibody against human alpha-4 integrin: a potential therapeutic for the treatment of multiple sclerosis. Hum Antibodies. 1997;8(1):3–16.

    Article  Google Scholar 

  65. Tubridy N, et al. The effect of anti-alpha4 integrin antibody on brain lesion activity in MS. The UK Antegren Study Group. Neurology. 1999;53(3):466–72. https://doi.org/10.1212/wnl.53.3.466.

    Article  CAS  PubMed  Google Scholar 

  66. Gordon FH, et al. A randomized placebo-controlled trial of a humanized monoclonal antibody to alpha4 integrin in active Crohn’s disease. Gastroenterology. 2001;121(2):268–74. https://doi.org/10.1053/gast.2001.26260.

    Article  CAS  PubMed  Google Scholar 

  67. Gordon FH, et al. A pilot study of treatment of active ulcerative colitis with natalizumab, a humanized monoclonal antibody to alpha-4 integrin. Aliment Pharmacol Ther. 2002;16(4):699–705. https://doi.org/10.1046/j.1365-2036.2002.01205.x.

    Article  CAS  PubMed  Google Scholar 

  68. Sandborn WJ, et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2005;353(18):1912–25. https://doi.org/10.1056/NEJMoa043335.

    Article  CAS  PubMed  Google Scholar 

  69. Targan SR, et al. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology. 2007;132(5):1672–83. https://doi.org/10.1053/j.gastro.2007.03.024.

    Article  CAS  PubMed  Google Scholar 

  70. Van Assche G, et al. Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med. 2005;353(4):362–8. https://doi.org/10.1056/NEJMoa051586.

    Article  PubMed  Google Scholar 

  71. Richardson EP. progressive multifocal leukoencephalopathy. N Engl J Med. 1961;265(17):815–23. https://doi.org/10.1056/nejm196110262651701.

    Article  PubMed  Google Scholar 

  72. Tan CS, Koralnik IJ. Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol. 2010;9(4):425–37. https://doi.org/10.1016/s1474-4422(10)70040-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miller, A. Assessing the Withdrawal of Natalizumab. Journal Watch 2005. https://www.jwatch.org/jn200507070000001/2005/07/07/assessing-withdrawal-natalizumab. Accessed 1 March 2021.

  74. Langer-Gould A, et al. Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med. 2005;353(4):375–81. https://doi.org/10.1056/NEJMoa051847.

    Article  CAS  PubMed  Google Scholar 

  75. Kleinschmidt-DeMasters BK, Tyler KL. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med. 2005;353(4):369–74. https://doi.org/10.1056/NEJMoa051782.

    Article  CAS  PubMed  Google Scholar 

  76. Huggett B. How Tysabri survived. Nat Biotechnol. 2009;27(11):986. https://doi.org/10.1038/nbt1109-986.

    Article  CAS  PubMed  Google Scholar 

  77. Biogen. FDA approves Tysabri® for the treatment of moderate-to-severe Crohn's Disease. 2008. https://investors.biogen.com/news-releases/news-release-details/fda-approves-tysabrir-treatment-moderate–severe-crohns-disease. Accessed 1 Mar 2021.

  78. Giovannoni G, et al. Updated incidence of natalizumab-associated progressive multifocal leukoencephalopathy (PML) and its relationship with natalizumab exposure over time (2815). Neurology. 2020;94(Supplemebt_15):2815.

    Google Scholar 

  79. Soler D, et al. The binding specificity and selective antagonism of vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflammatory bowel diseases. J Pharmacol Exp Ther. 2009;330(3):864–75. https://doi.org/10.1124/jpet.109.153973.

    Article  CAS  PubMed  Google Scholar 

  80. Stefanich EG, et al. A humanized monoclonal antibody targeting the β7 integrin selectively blocks intestinal homing of T lymphocytes. Br J Pharmacol. 2011;162(8):1855–70. https://doi.org/10.1111/j.1476-5381.2011.01205.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haanstra KG, et al. Antagonizing the α4β1 integrin, but not α4β7, inhibits leukocytic infiltration of the central nervous system in rhesus monkey experimental autoimmune encephalomyelitis. J Immunol. 2013;190(5):1961–73. https://doi.org/10.4049/jimmunol.1202490.

    Article  CAS  PubMed  Google Scholar 

  82. Döring A, et al. TET inducible expression of the α4β7-integrin ligand MAdCAM-1 on the blood–brain barrier does not influence the immunopathogenesis of experimental autoimmune encephalomyelitis. Eur J Immunol. 2011;41(3):813–21. https://doi.org/10.1002/eji.201040912.

    Article  CAS  PubMed  Google Scholar 

  83. Milch C, et al. Vedolizumab, a monoclonal antibody to the gut homing α4ß7 integrin, does not affect cerebrospinal fluid T-lymphocyte immunophenotype. J Neuroimmunol. 2013;264(1):123–6. https://doi.org/10.1016/j.jneuroim.2013.08.011.

    Article  CAS  PubMed  Google Scholar 

  84. Wyant T, et al. Vedolizumab affects antibody responses to immunisation selectively in the gastrointestinal tract: randomised controlled trial results. Gut. 2015;64(1):77–83. https://doi.org/10.1136/gutjnl-2014-307127.

    Article  CAS  PubMed  Google Scholar 

  85. Feagan BG, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699–710. https://doi.org/10.1056/NEJMoa1215734.

    Article  CAS  PubMed  Google Scholar 

  86. Feagan BG, et al. Efficacy of vedolizumab induction and maintenance therapy in patients with ulcerative colitis, regardless of prior exposure to tumor necrosis factor antagonists. Clin Gastroenterol Hepatol. 2017;15(2):229-239.e5. https://doi.org/10.1016/j.cgh.2016.08.044.

    Article  CAS  PubMed  Google Scholar 

  87. Sandborn WJ, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369(8):711–21. https://doi.org/10.1056/NEJMoa1215739.

    Article  CAS  PubMed  Google Scholar 

  88. Sands BE, et al. Effects of vedolizumab induction therapy for patients with Crohn’s disease in whom tumor necrosis factor antagonist treatment failed. Gastroenterology. 2014;147(3):618-627.e3. https://doi.org/10.1053/j.gastro.2014.05.008.

    Article  CAS  PubMed  Google Scholar 

  89. Sands BE, et al. Vedolizumab versus adalimumab for moderate-to-severe ulcerative colitis. N Engl J Med. 2019;381(13):1215–26. https://doi.org/10.1056/NEJMoa1905725.

    Article  CAS  PubMed  Google Scholar 

  90. Sandborn WJ, et al. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2012;142(2):257-265.e3. https://doi.org/10.1053/j.gastro.2011.10.032.

    Article  CAS  PubMed  Google Scholar 

  91. Colombel J-F, et al. Outcomes and strategies to support a treat-to-target approach in inflammatory bowel disease: a systematic review. J Crohns Colitis. 2020;14(2):254–66. https://doi.org/10.1093/ecco-jcc/jjz131.

    Article  PubMed  Google Scholar 

  92. Turner D, et al. STRIDE-II: an update on the selecting therapeutic targets in inflammatory bowel disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology. 2021;160(5):1570–83. https://doi.org/10.1053/j.gastro.2020.12.031.

    Article  CAS  PubMed  Google Scholar 

  93. Feagan BG, et al. Rapid response to vedolizumab therapy in biologic-naive patients with inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2019;17(1):130-138.e7. https://doi.org/10.1016/j.cgh.2018.05.026.

    Article  CAS  PubMed  Google Scholar 

  94. Faleck DM, et al. Shorter disease duration is associated with higher rates of response to vedolizumab in patients with crohn’s disease but not ulcerative colitis. Clin Gastroenterol Hepatol. 2019;17(12):2497-2505.e1. https://doi.org/10.1016/j.cgh.2018.12.040.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zundler S, et al. Immune cell trafficking and retention in inflammatory bowel disease: mechanistic insights and therapeutic advances. Gut. 2019;68(9):1688–700. https://doi.org/10.1136/gutjnl-2018-317977.

    Article  CAS  PubMed  Google Scholar 

  96. Zundler S, et al. Blockade of αEβ7 integrin suppresses accumulation of CD8(+) and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo. Gut. 2017;66(11):1936–48. https://doi.org/10.1136/gutjnl-2016-312439.

    Article  CAS  PubMed  Google Scholar 

  97. Kotze PG, et al. Real-world clinical, endoscopic and radiographic efficacy of vedolizumab for the treatment of inflammatory bowel disease. Aliment Pharmacol Therap. 2018;48(6):626–37. https://doi.org/10.1111/apt.14919.

    Article  CAS  Google Scholar 

  98. Loftus EV Jr, et al. Long-term safety of vedolizumab for inflammatory bowel disease. Aliment Pharmacol Ther. 2020;52(8):1353–65. https://doi.org/10.1111/apt.16060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Takeda Pharmaceuticals. Safety Data for the Long Term. News Releases 2020. https://www.entyviohcp.com/safety-profile. Accessed 7 Apr 2021.

  100. Mahadevan U, et al. Pregnancy and neonatal outcomes after fetal exposure to biologics and thiopurines among women with inflammatory bowel disease. Gastroenterology. 2021;160(4):1131–9. https://doi.org/10.1053/j.gastro.2020.11.038.

    Article  CAS  PubMed  Google Scholar 

  101. Verstockt B, et al. Expression levels of 4 genes in colon tissue might be used to predict which patients will enter endoscopic remission after vedolizumab therapy for inflammatory bowel diseases. Clin Gastroenterol Hepatol. 2020;18(5):1142-1151.e10. https://doi.org/10.1016/j.cgh.2019.08.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ananthakrishnan AN, et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe. 2017;21(5):603-610.e3. https://doi.org/10.1016/j.chom.2017.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zeissig S, et al. Vedolizumab is associated with changes in innate rather than adaptive immunity in patients with inflammatory bowel disease. Gut. 2019;68(1):25–39. https://doi.org/10.1136/gutjnl-2018-316023.

    Article  CAS  PubMed  Google Scholar 

  104. Vermeire S, et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. The Lancet. 2014;384(9940):309–18. https://doi.org/10.1016/s0140-6736(14)60661-9.

    Article  CAS  Google Scholar 

  105. Tew GW, et al. Association between response to etrolizumab and expression of integrin αE and granzyme A in colon biopsies of patients with ulcerative colitis. Gastroenterology. 2016;150(2):477-487.e9. https://doi.org/10.1053/j.gastro.2015.10.041.

    Article  PubMed  Google Scholar 

  106. Joeckel LT, Bird PI. Are all granzymes cytotoxic in vivo? Biol Chem. 2014;395(2):181–202. https://doi.org/10.1515/hsz-2013-0238.

    Article  CAS  PubMed  Google Scholar 

  107. Anthony DA, et al. Functional dissection of the granzyme family: cell death and inflammation. Immunol Rev. 2010;235(1):73–92. https://doi.org/10.1111/j.0105-2896.2010.00907.x.

    Article  CAS  PubMed  Google Scholar 

  108. Sandborn WJ, et al. Etrolizumab for the treatment of ulcerative colitis and Crohn’s disease: an overview of the phase 3 clinical program. Adv Ther. 2020;37(7):3417–31. https://doi.org/10.1007/s12325-020-01366-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Peyrin-Biroulet L, et al. Etrolizumab as induction and maintenance therapy in patients with ulcerative colitis previously exposed to anti-tumor necrosis factor agent: the randomized; phase 3 HICKORY trial. United Eur Gastroenterol J. 2020;8(10):1258–75. https://doi.org/10.1177/2050640620968709.

    Article  Google Scholar 

  110. ClinicalTrials.gov. A study of the efficacy and safety of etrolizumab in participants with ulcerative colitis who have been previously exposed to tumor necrosis factor (TNF) inhibitors (HICKORY). 2014. https://clinicaltrials.gov/ct2/show/NCT02100696. Accessed 15 Mar 2021.

  111. Dotan I, et al. Etrolizumab compared with adalimumab or placebo as induction therapy for ulcerative colitis: results from the randomized; phase 3 HIBISCUS I & II trials. United Eur Gastroenterol J. 2020;8(10):1258–75. https://doi.org/10.1177/2050640620968709.

    Article  Google Scholar 

  112. Danese S, et al. Etrolizumab versus infliximab for treating patients with moderately to severely active ulcerative colitis: results from the phase 3 GARDENIA study. United Eur Gastroenterol J. 2020;8(10):1258–75. https://doi.org/10.1177/2050640620968709.

    Article  Google Scholar 

  113. Vermeire S, et al. LB18 Etrolizumab versus placebo in tumor necrosis factor antagonist naive patients with ulcerative colitis: results from the randomized phase III LAUREL trial. United Eur Gastroenterol J. 2020;8(10):1258–75. https://doi.org/10.1177/2050640620968709.

    Article  Google Scholar 

  114. ClinicalTrials.gov. A study to assess whether etrolizumab is a safe and efficacious treatment for participants with moderately to severely active Crohn's disease (BERGAMOT). 2015. https://clinicaltrials.gov/ct2/show/NCT02394028. Accessed 20 Mar 2021.

  115. Selinger C, et al. OTU-003 Etrolizumab as induction therapy in moderate to severe crohn’s disease: results from Bergamot cohort 1. Gut. 2018;67(Supplement_1):A53. https://doi.org/10.1136/gutjnl-2018-BSGAbstracts.106.

    Article  Google Scholar 

  116. Sandborn WJ, et al. Efficacy and Safety of Abrilumab in a Randomized; Placebo-Controlled Trial for Moderate-to-Severe Ulcerative Colitis. Gastroenterology. 2019;156(4):946-957.e18. https://doi.org/10.1053/j.gastro.2018.11.035.

    Article  CAS  PubMed  Google Scholar 

  117. ClinicalTrials.gov. Abrilumab (AMG 181) in adults with moderate to severe Crohn's disease. 2012. https://clinicaltrials.gov/ct2/show/NCT01696396. Accessed 22 Mar 2021.

  118. Sandborn WJ, et al. OP035 Efficacy and safety of abrilumab (AMG 181/MEDI 7183) therapy for moderate to severe Crohn’s disease. J Crohn’s Colitis. 2017;11(Supplement_1):S22–3. https://doi.org/10.1093/ecco-jcc/jjx002.034.

    Article  Google Scholar 

  119. Mattheakis L, et al. P-126 PTG-100, An Oral Peptide Antagonist of Integrin α4β7 that Alters Trafficking of Gut Homing T Cells in Preclinical Animal Models. Inflamm Bowel Dis. 2016;22:S48. https://doi.org/10.1097/01.MIB.0000480232.55276.b3.

    Article  Google Scholar 

  120. ClinicalTrials.gov. Safety and efficacy study of PTG-100 in the treatment of moderate to severe ulcerative colitis. 2016. https://clinicaltrials.gov/ct2/show/NCT02895100. Accessed 30 Mar 2021.

  121. Sandborn W, et al. PTG-100, an oral gut-restricted peptide α4β7 antagonist, induces clinical and histologic remission in patients with moderate to severely active ulcerative colitis. United Eur Gastroenterol J. 2018;6(10):1586–97. https://doi.org/10.1177/2050640618812015.

    Article  Google Scholar 

  122. Mattheakis L, et al. 416 - The oral α4β7 integrin specific antagonist PN-10943 is more effective than PTG-100 in multiple preclinical studies. Gastroenterology. 2019;156(6):S80–1. https://doi.org/10.1016/S0016-5085(19)36988-4.

    Article  Google Scholar 

  123. Gupta SK, et al. Safety, pharmacokinetics, and pharmacodynamics of the novel oral peptide therapeutic PN-10943 (alpha4beta7 integrin antagonist) in normal healthy volunteers. Am J Gastroenterol. 2019;114:S430–1. https://doi.org/10.14309/01.ajg.0000592456.89314.1e .

    Article  Google Scholar 

  124. ClinicalTrials.gov. PN-943 in adults with moderate to severe active ulcerative colitis (UC). 2020. https://clinicaltrials.gov/ct2/show/NCT04504383. Accessed 30 Mar 2021.

  125. Yoshimura N, et al. Safety and Efficacy of AJM300, an Oral Antagonist of α4 Integrin, in Induction Therapy for Patients With Active Ulcerative Colitis. Gastroenterology. 2015;149(7):1775-1783.e2. https://doi.org/10.1053/j.gastro.2015.08.044.

    Article  CAS  PubMed  Google Scholar 

  126. Sugiura T, et al. Oral treatment with a novel small molecule alpha 4 integrin antagonist, AJM300, prevents the development of experimental colitis in mice. Journal of Crohn’s and Colitis. 2013;7(11):e533-542. https://doi.org/10.1016/j.crohns.2013.03.014.

    Article  PubMed  Google Scholar 

  127. Stüve O, et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann Neurol. 2006;59(5):743–7. https://doi.org/10.1002/ana.20858.

    Article  CAS  PubMed  Google Scholar 

  128. Bloomgren G, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366(20):1870–80. https://doi.org/10.1056/NEJMoa1107829.

    Article  CAS  PubMed  Google Scholar 

  129. ClinicalTrials.gov. A study to evaluate the safety and efficacy of AJM300 in participants with active ulcerative colitis. 2018. https://clinicaltrials.gov/ct2/show/record/NCT03531892. Accessed 22 Mar 2021.

  130. EA Pharma Co Ltd. Results of Phase III Clinical Study of AJM300 (Nonproprietary Name: Carotegrast Methyl) for Treatment of Ulcerative Colitis Conducted in Japan (AJM300 ⁄ CT3 Study)–Primary Endpoint. https://www.eapharma.co.jp/en/news/2021/0113.html. Accessed 22 Mar 2021.

  131. Takazoe M, et al. S1066 oral alpha-4 integrin inhibitor (AJM300) in patients with active Crohn’s disease—a randomized, double-blind; placebo-controlled trial. Gastroenterology. 2009;136(5):A181. https://doi.org/10.1016/S0016-5085(09)60816-7.

    Article  Google Scholar 

  132. Eisai Co Ltd. Major R&D Pipeline. 2021. https://www.eisai.com/company/business/research/pdf/epipeline.pdf. Accessed 29 Mar 2021.

  133. Ohkuro M, et al. Calreticulin and integrin alpha dissociation induces anti-inflammatory programming in animal models of inflammatory bowel disease. Nat Commun. 2018;9(1):1982. https://doi.org/10.1038/s41467-018-04420-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. University of Tsukuba, EA Pharma Co Ltd, and Eisai Co Ltd. Potent new mechanism of action for treatment of inflammatory bowel disease revealed. 2018. https://www.eisai.com/news/2018/pdf/enews201840pdf.pdf. Accessed 29 Mar 2021.

  135. ClinicalTrials.gov. Study of E6007 in Japanese patients with moderate active ulcerative colitis. 2017. https://clinicaltrials.gov/ct2/show/NCT03018054. Accessed 29 Mar 2021.

  136. Danese S, et al. Biological agents for moderately to severely active ulcerative colitis: a systematic review and network meta-analysis. Ann Intern Med. 2014;160(10):704–11. https://doi.org/10.7326/m13-2403.

    Article  PubMed  Google Scholar 

  137. Vickers AD, et al. Systematic review with network meta-analysis: comparative efficacy of biologics in the treatment of moderately to severely active ulcerative colitis. PLoS ONE. 2016;11(10): e0165435. https://doi.org/10.1371/journal.pone.0165435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sandborn WJ, et al. Efficacy and safety of vedolizumab subcutaneous formulation in a randomized trial of patients with ulcerative colitis. Gastroenterology. 2020;158(3):562-572.e12. https://doi.org/10.1053/j.gastro.2019.08.027.

    Article  CAS  PubMed  Google Scholar 

  139. Pharmaceuticals, T. European Commission Approves Subcutaneous Formulation of Entyvio® (Vedolizumab) for use as Maintenance Therapy in Adults with Moderately to Severely Active Ulcerative Colitis or Crohn’s Disease. 2020. https://www.takeda.com/newsroom/newsreleases/2020/european-commission-approves-subcutaneous-entyvio-for-use-as-maintenance-therapy-in-ulcerative-colitis-or-crohns-disease/. Accessed 30 July 2021.

  140. Kobayashi M, et al. GlcNAc6ST-1-mediated decoration of MAdCAM-1 protein with L-selectin ligand carbohydrates directs disease activity of ulcerative colitis. Inflamm Bowel Dis. 2009;15(5):697–706. https://doi.org/10.1002/ibd.20827.

    Article  PubMed  Google Scholar 

  141. Sikorski EE, et al. The Peyer’s patch high endothelial receptor for lymphocytes, the mucosal vascular addressin, is induced on a murine endothelial cell line by tumor necrosis factor-alpha and IL-1. J Immunol. 1993;151(10):5239–50.

    Article  CAS  PubMed  Google Scholar 

  142. Connor EM, et al. Expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in acute and chronic inflammation. J Leukoc Biol. 1999;65(3):349–55. https://doi.org/10.1002/jlb.65.3.349.

    Article  CAS  PubMed  Google Scholar 

  143. Arihiro S, et al. Differential expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in ulcerative colitis and Crohn’s disease. Pathol Int. 2002;52(5–6):367–74. https://doi.org/10.1046/j.1440-1827.2002.01365.x.

    Article  CAS  PubMed  Google Scholar 

  144. Bargatze RF, Jutila MA, Butcher EC. Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity. 1995;3(1):99–108. https://doi.org/10.1016/1074-7613(95)90162-0.

    Article  CAS  PubMed  Google Scholar 

  145. Pullen N, et al. Pharmacological characterization of PF-00547659, an anti-human MAdCAM monoclonal antibody. Br J Pharmacol. 2009;157(2):281–93. https://doi.org/10.1111/j.1476-5381.2009.00137.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vermeire S, et al. The mucosal addressin cell adhesion molecule antibody PF-00547,659 in ulcerative colitis: a randomised study. Gut. 2011;60(8):1068–75. https://doi.org/10.1136/gut.2010.226548.

    Article  CAS  PubMed  Google Scholar 

  147. ClinicalTrials.gov. A study to investigate the safety and efficacy properties Of PF-00547659 in patients with active ulcerative colitis. 2009. https://clinicaltrials.gov/ct2/show/NCT00928681. Accessed 31 Mar 2021.

  148. Vermeire S, et al. Anti-MAdCAM antibody (PF-00547659) for ulcerative colitis (TURANDOT): a phase 2, randomised, double-blind, placebo-controlled trial. The Lancet. 2017;390(10090):135–44. https://doi.org/10.1016/S0140-6736(17)30930-3.

    Article  CAS  Google Scholar 

  149. ClinicalTrials.gov. A study of PF-00547659 in patients with moderate to severe ulcerative colitis (TURANDOT). 2012. https://clinicaltrials.gov/ct2/show/NCT01620255. Accessed 31 March 2021.

  150. Reinisch W, et al. Long-term safety and efficacy of the anti-MAdCAM-1 monoclonal antibody ontamalimab (SHP647) for the treatment of ulcerative colitis: the open-label study TURANDOT II. J Crohn’s Colitis. 2021. https://doi.org/10.1093/ecco-jcc/jjab023 (Epub ahead of print(18 Feb 2021)).

    Article  Google Scholar 

  151. Sandborn WJ, et al. Phase II evaluation of anti-MAdCAM antibody PF-00547659 in the treatment of Crohn’s disease: report of the OPERA study. Gut. 2018;67(10):1824–35. https://doi.org/10.1136/gutjnl-2016-313457.

    Article  CAS  PubMed  Google Scholar 

  152. Su C, et al. A meta-analysis of the placebo rates of remission and response in clinical trials of active Crohn’s disease. Gastroenterology. 2004;126(5):1257–69. https://doi.org/10.1053/j.gastro.2004.01.024.

    Article  PubMed  Google Scholar 

  153. Sandborn WJ, et al. Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. 2012;367(16):1519–28. https://doi.org/10.1056/NEJMoa1203572.

    Article  CAS  PubMed  Google Scholar 

  154. Feagan BG, et al. Treatment of active Crohn’s disease with MLN0002, a humanized antibody to the alpha4beta7 integrin. Clin Gastroenterol Hepatol. 2008;6(12):1370–7. https://doi.org/10.1016/j.cgh.2008.06.007.

    Article  CAS  PubMed  Google Scholar 

  155. Hassan-Zahraee M, et al. Anti-madcam antibody increases ß7+ T cells and CCR9 gene expression in the peripheral blood of patients with Crohn’s disease. J Crohn’s Colitis. 2018;12(1):77–86. https://doi.org/10.1093/ecco-jcc/jjx121.

    Article  Google Scholar 

  156. ClinicalTrials.gov. Long-term safety of PF-00547659 In ulcerative colitis (TURANDOT II). 2013. https://clinicaltrials.gov/ct2/show/NCT01771809. Accessed 1 Apr 2021.

  157. D’Haens G, et al. Effect of PF-00547659 on central nervous system immune surveillance and circulating β7+ T cells in Crohn’s disease: report of the TOSCA study. J Crohns Colitis. 2017;12(2):188–96. https://doi.org/10.1093/ecco-jcc/jjx128.

    Article  PubMed Central  Google Scholar 

  158. ClinicalTrials.gov. Evaluate PF-00547659 on cerebrospinal fluid lymphocytes in volunteers with Crohn's disease or ulcerative colitis who failed or did not tolerate anti-TNFs (TOSCA). 2020. https://clinicaltrials.gov/ct2/show/NCT01387594. Accessed 1 Apr 2021.

  159. ClinicalTrials.gov. A study to monitor long-term treatment with PF-00547659 (OPERA II). 2011. https://clinicaltrials.gov/ct2/show/NCT01298492. Accessed 1 Apr 2021.

  160. D’Haens G, et al. P037 Long-term safety, efficacy and pharmacokinetics of the anti-Mucosal Addressin Cell Adhesion Molecule-1 (MAdCAM-1) monoclonal antibody SHP647 in Crohn’s disease: THe Opera II Study. Gastroenterology. 2019;156(Supplement_3):S26–7. https://doi.org/10.1053/j.gastro.2019.01.089.

    Article  Google Scholar 

  161. European Commission, Commission Decision of 20/11/2018 declaring a concentration to be compatible with the common market (Case No COMP/M.8955 - TAKEDA / SHIRE) according to Council Regulation (EC) No 139/2004 2018, Office for Official Publications of the European Union: Brussels.

  162. Takeda. European Commission Releases Takeda from Commitment to Divest Shire’s Pipeline Compound SHP647. News Releases 2020. https://www.takeda.com/newsroom/newsreleases/2020/european-commission-releases-takeda-from-commitment-to-divest--shires-pipeline-compound-shp647/. Accessed 2 Apr 2021.

  163. ClinicalTrials.gov. A safety extension study of ontamalimab in participants with moderate to severe ulcerative colitis or Crohn's disease (AIDA). 2017. https://clinicaltrials.gov/ct2/show/NCT03283085. Accessed 2 Apr 2021.

  164. Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol. 2005;5(7):560–70. https://doi.org/10.1038/nri1650.

    Article  CAS  PubMed  Google Scholar 

  165. O’Sullivan C, Dev KK. The structure and function of the S1P1 receptor. Trends Pharmacol Sci. 2013;34(7):401–12. https://doi.org/10.1016/j.tips.2013.05.002.

    Article  CAS  PubMed  Google Scholar 

  166. Memon RA, et al. Endotoxin and cytokines increase hepatic sphingolipid biosynthesis and produce lipoproteins enriched in ceramides and sphingomyelin. Arterioscler Thromb Vasc Biol. 1998;18(8):1257–65. https://doi.org/10.1161/01.atv.18.8.1257.

    Article  CAS  PubMed  Google Scholar 

  167. Lo CG, et al. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J Exp Med. 2005;201(2):291–301. https://doi.org/10.1084/jem.20041509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chun J, Hartung H-P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33(2):91–101. https://doi.org/10.1097/WNF.0b013e3181cbf825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shiow LR, et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature. 2006;440(7083):540–4. https://doi.org/10.1038/nature04606.

    Article  CAS  PubMed  Google Scholar 

  170. Swan DJ, Kirby JA, Ali S. Post-transplant immunosuppression: regulation of the efflux of allospecific effector T cells from lymphoid tissues. PLoS ONE. 2012;7(9): e45548. https://doi.org/10.1371/journal.pone.0045548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Schwab SR, et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science. 2005;309(5741):1735–9. https://doi.org/10.1126/science.1113640.

    Article  CAS  PubMed  Google Scholar 

  172. Brinkmann V, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem. 2002;277(24):21453–7. https://doi.org/10.1074/jbc.C200176200.

    Article  CAS  PubMed  Google Scholar 

  173. Gräler MH, Goetzl EJ. The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G protein-coupled receptors. Feder Am Soc Exp Biol J. 2004;18(3):551–3. https://doi.org/10.1096/fj.03-0910fje.

    Article  CAS  Google Scholar 

  174. Weinreich MA, Hogquist KA. Thymic emigration: when and how T cells leave home. J Immunol. 2008;181(4):2265–70. https://doi.org/10.4049/jimmunol.181.4.2265.

    Article  CAS  PubMed  Google Scholar 

  175. Ledgerwood LG, et al. The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat Immunol. 2008;9(1):42–53. https://doi.org/10.1038/ni1534.

    Article  CAS  PubMed  Google Scholar 

  176. Fujii T, et al. FTY720 suppresses the development of colitis in lymphoid-null mice by modulating the trafficking of colitogenic CD4+ T cells in bone marrow. Eur J Immunol. 2008;38(12):3290–303. https://doi.org/10.1002/eji.200838359.

    Article  CAS  PubMed  Google Scholar 

  177. Fujii R, et al. FTY720 suppresses CD4+CD44highCD62L− effector memory T cell-mediated colitis. Am J Physiol Gastrointest Liver Physiol. 2006;291(2):G267–74. https://doi.org/10.1152/ajpgi.00496.2005.

    Article  CAS  PubMed  Google Scholar 

  178. Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol Ther. 2007;115(1):84–105. https://doi.org/10.1016/j.pharmthera.2007.04.006.

    Article  CAS  PubMed  Google Scholar 

  179. Scott FL, et al. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br J Pharmacol. 2016;173(11):1778–92. https://doi.org/10.1111/bph.13476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sandborn WJ, et al. Ozanimod induction and maintenance treatment for ulcerative colitis. N Engl J Med. 2016;374(18):1754–62. https://doi.org/10.1056/NEJMoa1513248.

    Article  CAS  PubMed  Google Scholar 

  181. Sandborn WJ, et al. Long-term efficacy and safety of ozanimod in moderately to severely active ulcerative colitis: results from the open-label extension of the randomized; phase 2 TOUCHSTONE study. J Crohn’s Colitis. 2021. https://doi.org/10.1093/ecco-jcc/jjab012 (Epub ahead of print(13 January 2021)).

    Article  Google Scholar 

  182. ClinicalTrials.gov. Open-label extension of RPC1063 as Therapy for moderate to severe ulcerative colitis. 2015. https://clinicaltrials.gov/ct2/show/NCT02531126. Accessed 8 Apr 2021.

  183. Tran JQ, et al. Cardiac safety of ozanimod, a novel sphingosine-1-phosphate receptor modulator: results of a thorough QT/QTc study. Clin Pharmacol Drug Dev. 2018;7(3):263–76. https://doi.org/10.1002/cpdd.383.

    Article  CAS  PubMed  Google Scholar 

  184. ClinicalTrials.gov. Safety and efficacy trial of RPC1063 for moderate to severe ulcerative colitis. 2015. https://clinicaltrials.gov/ct2/show/NCT02435992. Accessed 8 Apr 2021.

  185. Sandborn W, et al. P025 ozanimod efficacy, safety, and histology in patients with moderate-to-severe ulcerative colitis during induction in the phase 3 true north study. Am J Gastroenterol. 2020;115(Supplement_1):S6–7. https://doi.org/10.14309/01.ajg.0000722896.32651.d6.

    Article  Google Scholar 

  186. Silvio D, et al. P030 ozanimod efficacy, safety, and histology in patients with moderate-to-severe ulcerative colitis during maintenance in the phase 3 true north study. Am J Gastroenterol. 2020;115:S8. https://doi.org/10.14309/01.ajg.0000722916.98351.89.

    Article  PubMed  Google Scholar 

  187. Feagan BG, et al. Ozanimod induction therapy for patients with moderate to severe Crohn’s disease: a single-arm, phase 2, prospective observer-blinded endpoint study. Lancet Gastroenterol Hepatol. 2020;5(9):819–28. https://doi.org/10.1016/S2468-1253(20)30188-6.

    Article  PubMed  Google Scholar 

  188. Rutgeerts P, et al. Efficacy of ustekinumab for inducing endoscopic healing in patients with Crohn’s disease. Gastroenterology. 2018;155(4):1045–58. https://doi.org/10.1053/j.gastro.2018.06.035.

    Article  CAS  PubMed  Google Scholar 

  189. Sandborn WJ, et al. Efficacy and safety of etrasimod in a phase 2 randomized trial of patients with ulcerative colitis. Gastroenterology. 2020;158(3):550–61. https://doi.org/10.1053/j.gastro.2019.10.035.

    Article  CAS  PubMed  Google Scholar 

  190. Vermeire S, et al. Long-term safety and efficacy of etrasimod for ulcerative colitis: results from the open-label extension of the OASIS study. J Crohn’s Colitis. 2021. https://doi.org/10.1093/ecco-jcc/jjab016 (Epub ahead of print(22 January 2021)).

    Article  Google Scholar 

  191. D’Haens G, et al. DOP48 Amiselimod, a selective S1P receptor modulator in Crohn’s disease patients: a proof-of-concept study. J Crohn’s Colitis. 2019;13(Supplement_1):S055–6. https://doi.org/10.1093/ecco-jcc/jjy222.082.

    Article  Google Scholar 

  192. D’Haens GRAM, et al. P095 Amiselimod safety profile for Crohn’s disease, stratified by previous treatment with anti-TNF agents. Gastroenterology. 2020;158(Supplement_3):S1. https://doi.org/10.1053/j.gastro.2019.11.042.

    Article  Google Scholar 

  193. D’Haens GRAM, et al. P097 Favorable safety profile for amiselimod, a selective S1P receptor modulator, in Crohn’s disease. Gastroenterology. 2020;158(Supplement_3):S2. https://doi.org/10.1053/j.gastro.2019.11.044.

    Article  Google Scholar 

  194. Song J, et al. A novel sphingosine 1-phosphate receptor agonist, 2-amino-2-propanediol hydrochloride (KRP-203), regulates chronic colitis in interleukin-10 gene-deficient mice. J Pharmacol Exp Ther. 2008;324(1):276–83. https://doi.org/10.1124/jpet.106.119172.

    Article  CAS  PubMed  Google Scholar 

  195. Radeke HH, et al. A multicentre, double-blind; placebo-controlled; parallel-group study to evaluate the efficacy, safety, and tolerability of the S1P receptor agonist KRP203 in patients with moderately active refractory ulcerative colitis. Inflamm Intest Dis. 2020;5(4):180–90. https://doi.org/10.1159/000509393.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Ma C, et al. Innovations in oral therapies for inflammatory bowel disease. Drugs. 2019;79(12):1321–35. https://doi.org/10.1007/s40265-019-01169-y.

    Article  CAS  PubMed  Google Scholar 

  197. D’Amico F, et al. New drugs in the pipeline for the treatment of inflammatory bowel diseases: what is coming? Curr Opin Pharmacol. 2020;55:141–50. https://doi.org/10.1016/j.coph.2020.10.015.

    Article  CAS  PubMed  Google Scholar 

  198. Zundler S, et al. The α4β1 homing pathway is essential for ileal homing of Crohn’s disease effector T cells in vivo. Inflamm Bowel Dis. 2017;23(3):379–91. https://doi.org/10.1097/mib.0000000000001029.

    Article  PubMed  Google Scholar 

  199. Yang E, et al. Efficacy and safety of simultaneous treatment with two biologic medications in refractory Crohn’s disease. Aliment Pharmacol Ther. 2020;51(11):1031–8. https://doi.org/10.1111/apt.15719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Glassner K, et al. The use of combination biological or small molecule therapy in inflammatory bowel disease: a retrospective cohort study. J Dig Dis. 2020;21(5):264–71. https://doi.org/10.1111/1751-2980.12867.

    Article  CAS  PubMed  Google Scholar 

  201. Bristol Myers Squibb. Bristol Myers Squibb Presents Positive Late-Breaking Data from Phase 3 True North Trial Evaluating Zeposia (ozanimod) in Adult Patients with Moderate to Severe Ulcerative Colitis. Corporate/Financial News 2020. https://news.bms.com/news/details/2020/Bristol-Myers-Squibb-Presents-Positive-Late-Breaking-Data-from-Phase-3-True-North-Trial-Evaluating-Zeposia-ozanimod-in-Adult-Patients-with-Moderate-to-Severe-Ulcerative-Colitis/default.aspx. Accessed 23 Apr 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Lamb.

Ethics declarations

Funding

No sources of funding were used to conduct this study or prepare this manuscript.

Conflicts of interest

Dr R Alexander Speight has received grants from Genentech and personal fees from Dr Falk Pharma, Janssen, AbbVie, Tillotts and Takeda, outside the submitted work. Dr Nicola Wyatt, Dr Christopher Stewart, and Prof. John Kirby have no conflicts of interest that are directly relevant to the content of this article. Dr Christopher Lamb has received grants from Genentech, AbbVie, Eli Lilly, Pfizer, Roche, UCB Biopharma, Sanofi Aventis, Biogen IDEC, Orion OYJ and AstraZeneca; personal fees from Dr Falk Pharma and Ferring; and grants and personal fees from Janssen and Takeda, all outside the submitted work.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contributions

NJW and CAL planned the manuscript content, which was drafted by NJW. CAL provided critical review during manuscript drafting and supervised the work. All other authors (RAS, CJS, and JAK) critically reviewed the manuscript. All authors approved the final manuscript.

Ethics approval

Not applicable.

Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyatt, N.J., Speight, R.A., Stewart, C.J. et al. Targeting Leukocyte Trafficking in Inflammatory Bowel Disease. BioDrugs 35, 473–503 (2021). https://doi.org/10.1007/s40259-021-00496-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-021-00496-5

Navigation