Skip to main content
Log in

Chronic Myeloid Leukemia: Immunobiology and Novel Immunotherapeutic Approaches

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Imatinib has revolutionized the treatment and prognosis of chronic myeloid leukemia (CML) with survival rates now approaching those of the age-matched healthy population. To be able to discontinue tyrosine kinase inhibitor (TKI) treatment, it is necessary to develop complementary therapies to target minimal residual disease. Recent findings by a number of investigators in both CML mouse models and CML patients offer evidence that many factors in the leukemic microenvironment can collectively contribute to immune escape, including expansion of myeloid-derived suppressor cells, programmed death-1/programmed death-1 ligand interactions resulting in T-cell impairment, expression of soluble suppressive factors such as soluble CD25, and down-regulation of MHC molecules by CML cells. Other investigators have studied the role of cytokines on the resistance to TKIs by leukemic stem cells (LSCs) and have highlighted the implication of the JAK/STAT pathway as well as the interleukin 1 (IL-1) signaling pathway. Distinct immunologic strategies have been considered to harness the immune system or trigger LSC death to allow more CML patients to discontinue TKI treatment (so-called functional cure). Successful immunotherapy and TKI combination and the optimal timing of immunotherapy determination represent major challenges for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldman JM, Melo JV. Chronic myeloid leukemia—advances in biology and new approaches to treatment. N Engl J Med. 2003;349(15):1451–64.

    Article  CAS  PubMed  Google Scholar 

  2. Druker BJ, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.

    Article  CAS  PubMed  Google Scholar 

  3. Baccarani M, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mahon F-X, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35.

    Article  CAS  PubMed  Google Scholar 

  5. Kinstrie R, Copland M. Targeting chronic myeloid leukemia stem cells. Curr Hematol Malig Rep. 2013;8(1):14–21.

    Article  PubMed  Google Scholar 

  6. Chu S, et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood. 2011;118(20):5565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Essers MAG, et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature. 2009;458(7240):904–8.

    Article  CAS  PubMed  Google Scholar 

  8. Pierson BA, Miller JS. CD56+ bright and CD56+ dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood. 1996;88(6):2279–87.

    CAS  PubMed  Google Scholar 

  9. Chang WC, Fujimiya Y, Casteel N, Pattengale P. Natural killer cell immunodeficiency in patients with chronic myelogenous leukemia. III. Defective interleukin-2 production by T-helper and natural killer cells. Int J Cancer. 1989;43(4):591–7.

    Article  CAS  PubMed  Google Scholar 

  10. Chen CI-U, et al. NK cells are dysfunctional in human chronic myelogenous leukemia before and on imatinib treatment and in BCR-ABL-positive mice. Leukemia. 2012;26(3):465–74.

    Article  CAS  PubMed  Google Scholar 

  11. Mohty M, et al. Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment. Blood. 2001;98(13):3750–6.

    Article  CAS  PubMed  Google Scholar 

  12. Mohty M, et al. Low blood dendritic cells in chronic myeloid leukaemia patients correlates with loss of CD34+/CD38− primitive haematopoietic progenitors. Br J Haematol. 2002;119(1):115–8.

    Article  PubMed  Google Scholar 

  13. Dong R, et al. Dendritic cells from CML patients have altered actin organization, reduced antigen processing, and impaired migration. Blood. 2003;101(9):3560–7.

    Article  CAS  PubMed  Google Scholar 

  14. Rossignol A, et al. Evidence for BCR-ABL-dependent dysfunctions of iNKT cells from chronic myeloid leukemia patients. Eur J Immunol. 2012;42(7):1870–5.

    Article  CAS  PubMed  Google Scholar 

  15. Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007;25(1):297–336.

    Article  CAS  PubMed  Google Scholar 

  16. Basbous S, et al. The Rho-ROCK pathway as a new pathological mechanism of innate immune subversion in chronic myeloid leukaemia. J Pathol. 2016;240(3):262–8.

    Article  CAS  PubMed  Google Scholar 

  17. Christiansson L, et al. Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia. PloS One. 2013;8(1):e55818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14(8):561–84.

    Article  CAS  PubMed  Google Scholar 

  19. Mumprecht S, Schürch C, Schwaller J, Solenthaler M, Ochsenbein AF. Programmed death 1 signaling on chronic myeloid leukemia-specific T cells results in T-cell exhaustion and disease progression. Blood. 2009;114(8):1528–36.

    Article  CAS  PubMed  Google Scholar 

  20. Giallongo C, et al. Myeloid derived suppressor cells in chronic myeloid leukemia. Front Oncol. 2015;5:107. doi:10.3389/fonc.2015.00107.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Youn J-I, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40(11):2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wesolowski R, Markowitz J, Carson WE. Myeloid derived suppressor cells—a new therapeutic target in the treatment of cancer. J Immunother Cancer. 2013;1(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Najjar YG, Finke JH. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer. Front Oncol. 2013; 3.

  24. Tarafdar A, et al. CML cells actively evade host immune surveillance through cytokine-mediated downregulation of MHC-II expression. Blood. 2017;129(2):199–208.

    Article  PubMed  Google Scholar 

  25. Gallipoli P, et al. JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood. 2014;124(9):1492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okabe S, Tauchi T, Katagiri S, Tanaka Y, Ohyashiki K. Combination of the ABL kinase inhibitor imatinib with the Janus kinase 2 inhibitor TG101348 for targeting residual BCR-ABL-positive cells. J Hematol Oncol. 2014;7(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Levescot A, et al. BCR-ABL-induced deregulation of the IL-33/ST2 pathway in CD34(+) progenitors from chronic myeloid leukemia patients. Cancer Res. 2014;74(10):2669–76.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang B, et al. Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor-treated CML stem cells. Blood. 2016;128(23):2671–82.

    Article  CAS  PubMed  Google Scholar 

  29. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific P210 protein is the product of the BCR/ABL hybrid gene. Science. 1986;233(4760):212–4.

    Article  CAS  PubMed  Google Scholar 

  30. Gerber JM, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol. 2011;86(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bocchia M, et al. Specific human cellular immunity to BCR-ABL oncogene-derived peptides. Blood. 1996;87(9):3587–92.

    CAS  PubMed  Google Scholar 

  32. Norbury LC, Clark RE, Christmas SE. b3a2 BCR-ABL fusion peptides as targets for cytotoxic T cells in chronic myeloid leukaemia. Br J Haematol. 2000;109(3):616–21.

    Article  CAS  PubMed  Google Scholar 

  33. Livingston PO, et al. Phase 1 trial of immunological adjuvant QS-21 with a GM2 ganglioside-keyhole limpet haemocyanin conjugate vaccine in patients with malignant melanoma. Vaccine. 1994;12(14):1275–80.

    Article  CAS  PubMed  Google Scholar 

  34. Cathcart K, et al. A multivalent BCR-ABL fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood. 2004;103(3):1037–42.

    Article  CAS  PubMed  Google Scholar 

  35. Bocchia M, et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet. 2005;365(9460):657–62.

    Article  CAS  PubMed  Google Scholar 

  36. Rojas JM, Knight K, Wang L, Clark RE. Clinical evaluation of BCR-ABL peptide immunisation in chronic myeloid leukaemia: results of the EPIC study. Leukemia. 2007;21(11):2287–95.

    Article  CAS  PubMed  Google Scholar 

  37. Rezvani K, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Quintarelli C, et al. Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood. 2008;112(5):1876–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dubrovsky L, et al. A TCR-mimic antibody to WT1 bypasses tyrosine kinase inhibitor resistance in human BCR-ABL+ leukemias. Blood. 2014;123(21):3296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qazilbash MH, et al. PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia. 2017;31(3):697–704.

    Article  CAS  PubMed  Google Scholar 

  41. Allegra A, Innao V, Gerace D, Vaddinelli D, Musolino C. Adoptive immunotherapy for hematological malignancies: current status and new insights in chimeric antigen receptor T cells. Blood Cells Mol Dis. 2016;62:49–63.

    Article  CAS  PubMed  Google Scholar 

  42. Kreutzman A, et al. Chronic Myeloid Leukemia Patients in Prolonged Remission following Interferon-α Monotherapy Have Distinct Cytokine and Oligoclonal Lymphocyte Profile. PLOS One. 2011;6(8):e23022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de Castro FA, et al. Immunological effects of interferon-alpha on chronic myelogenous leukemia. Leuk Lymphoma. 2003;44(12):2061–7.

    Article  PubMed  Google Scholar 

  44. Hjorth-Hansen H, et al. Safety and efficacy of the combination of pegylated interferon-α2b and dasatinib in newly diagnosed chronic-phase chronic myeloid leukemia patients. Leukemia. 2016;30(9):1853–60.

    Article  CAS  PubMed  Google Scholar 

  45. Polivkova V, et al. Interferon-α revisited: individualized treatment management eased the selective pressure of tyrosine kinase inhibitors on BCR-ABL1 mutations resulting in a molecular response in high-risk CML patients. Plos One. 2016;11(5):0155959.

    Article  Google Scholar 

  46. Hughes TP, Ross DM. Moving treatment-free remission into mainstream clinical practice in CML. Blood. 2016;128(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  47. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117(5):1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ilander M, et al. Increased proportion of mature NK cells is associated with successful imatinib discontinuation in chronic myeloid leukemia. Leukemia. 2017;31:1108–16.

    Article  CAS  PubMed  Google Scholar 

  49. Burchert A, et al. Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J Clin Oncol. 2010;28(8):1429–35.

    Article  CAS  PubMed  Google Scholar 

  50. Hehlmann R, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-Study IV. J Clin Oncol. 2014;32(5):415–23.

    Article  PubMed  Google Scholar 

  51. Schütz C, et al. Expression of the CTLA-4 ligand CD86 on plasmacytoid dendritic cells (pDC) predicts risk of disease recurrence after treatment discontinuation in CML. Leukemia. 2017;31(4):829–36.

    Article  PubMed  Google Scholar 

  52. Sopper S, et al. Reduced CD62L expression on T cells and increased soluble CD62L levels predict molecular response to tyrosine kinase inhibitor therapy in early chronic-phase chronic myelogenous leukemia. J Clin Oncol. 2016;35(2):175–84.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Guilhot.

Ethics declarations

Funding

This work was supported by grants from Ligue Nationale contre Cancer and Institut National de la Santé et de la Recherche Médicale.

Conflicts of Interest

Emilie Cayssials and Francois Guilhot declare no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cayssials, E., Guilhot, F. Chronic Myeloid Leukemia: Immunobiology and Novel Immunotherapeutic Approaches. BioDrugs 31, 143–149 (2017). https://doi.org/10.1007/s40259-017-0225-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-017-0225-6

Keywords

Navigation