Skip to main content
Log in

The Arrival of JAK Inhibitors: Advancing the Treatment of Immune and Hematologic Disorders

  • Current Opinion
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Altered production of cytokines can result in pathologies ranging from autoimmune diseases to malignancies. The Janus kinase family is a small group of receptor-associated signaling molecules that is essential to the signal cascade originating from type I and type II cytokine receptors. Inhibition of tyrosine kinase enzymatic activity using small molecules has recently become a powerful tool for treatment of several malignancies. Twenty years after the discovery of these enzymes, two inhibitors for this class of kinases have been approved for clinical use and others are currently in the final stage of development. Here we review the principles of cytokines signaling, summarize our current knowledge of the approved inhibitors, and briefly introduce some of the inhibitors that are currently under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. O’Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008;28(4):477–87.

    Article  PubMed  Google Scholar 

  2. Xavier RJ, Rioux JD. Genome-wide association studies: a new window into immune-mediated diseases. Nat Rev Immunol. 2008;8(8):631–43.

    Article  CAS  PubMed  Google Scholar 

  3. O’Shea JJ, Gadina M, Kanno Y. Cytokine signaling: birth of a pathway. J Immunol. 2011;187(11):5475–8.

    Article  PubMed  Google Scholar 

  4. Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Ann Rev Immunol. 1998;16:293–322.

    Article  CAS  Google Scholar 

  5. Yamaoka K, Saharinen P, Pesu M, Holt VE 3rd, Silvennoinen O, O’Shea JJ. The Janus kinases (Jaks). Genome Biol. 2004;5(12):253.

    Article  PubMed  Google Scholar 

  6. Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, et al. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol. 2011;18(9):971–6.

    Article  CAS  PubMed  Google Scholar 

  7. Harry BL, Eckhardt SG, Jimeno A. JAK2 inhibition for the treatment of hematologic and solid malignancies. Expert Opin Invest Drugs. 2012;21(5):637–55.

    Article  CAS  Google Scholar 

  8. Zhou YJ, Chen M, Cusack NA, Kimmel LH, Magnuson KS, Boyd JG, et al. Unexpected effects of FERM domain mutations on catalytic activity of Jak3: structural implication for Janus kinases. Mol Cell. 2001;8(5):959–69.

    Article  CAS  PubMed  Google Scholar 

  9. O’Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell. 2002;109(Suppl):S121–31.

    Article  PubMed  Google Scholar 

  10. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M, et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997;278(5341):1309–12.

    Article  CAS  PubMed  Google Scholar 

  11. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93(3):373–83.

    Article  CAS  PubMed  Google Scholar 

  12. Van Roosbroeck K, Cox L, Tousseyn T, Lahortiga I, Gielen O, Cauwelier B, et al. JAK2 rearrangements, including the novel SEC31A-JAK2 fusion, are recurrent in classical Hodgkin lymphoma. Blood. 2011;117(15):4056–64.

    Article  PubMed  Google Scholar 

  13. Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer. 2007;7(9):673–83.

    Article  CAS  PubMed  Google Scholar 

  14. Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity. 2000;13(4):549–60.

    Article  CAS  PubMed  Google Scholar 

  15. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.

    Article  CAS  PubMed  Google Scholar 

  16. Kilic SS, Hacimustafaoglu M, Boisson-Dupuis S, Kreins AY, Grant AV, Abel L, et al. A patient with tyrosine kinase 2 deficiency without hyper-IgE syndrome. J Pediatr. 2012;160(6):1055–7.

    Article  PubMed  Google Scholar 

  17. Kovanen PE, Leonard WJ. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev. 2004;202:67–83.

    Article  CAS  PubMed  Google Scholar 

  18. Frucht DM, Gadina M, Jagadeesh GJ, Aksentijevich I, Takada K, Bleesing JJ, et al. Unexpected and variable phenotypes in a family with JAK3 deficiency. Genes Immun. 2001;2(8):422–32.

    Article  CAS  PubMed  Google Scholar 

  19. Brugnoni D, Notarangelo LD, Sottini A, Airo P, Pennacchio M, Mazzolari E, et al. Development of autologous, oligoclonal, poorly functioning T lymphocytes in a patient with autosomal recessive severe combined immunodeficiency caused by defects of the Jak3 tyrosine kinase. Blood. 1998;91(3):949–55.

    CAS  PubMed  Google Scholar 

  20. Verstovsek S, Kantarjian HM, Estrov Z, Cortes JE, Thomas DA, Kadia T, et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood. 2012;120(6):1202–9.

    Article  CAS  PubMed  Google Scholar 

  21. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. New Engl J Med. 2012;366(9):799–807.

    Article  CAS  PubMed  Google Scholar 

  22. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. New Engl J Med. 2010;363(12):1117–27.

    Article  CAS  PubMed  Google Scholar 

  23. Mesa RA. Ruxolitinib, a selective JAK1 and JAK2 inhibitor for the treatment of myeloproliferative neoplasms and psoriasis. IDrugs: Invest Drugs J. 2010;13(6):394–403.

  24. Pardanani A, Gotlib JR, Jamieson C, Cortes JE, Talpaz M, Stone RM, et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J Clin Oncol: Off J Am Soc Clin Oncol. 2011;29(7):789–96.

    Article  CAS  Google Scholar 

  25. Weigert O, Lane AA, Bird L, Kopp N, Chapuy B, van Bodegom D, et al. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med. 2012;209(2):259–73.

    Article  CAS  PubMed  Google Scholar 

  26. Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T, et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Nature. 2012;489(7414):155–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kontzias A, Kotlyar A, Laurence A, Changelian P, O’Shea JJ. Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Curr Opin Pharmacol. 2012;12(4):464–70.

    Article  CAS  PubMed  Google Scholar 

  28. Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008;26(1):127–32.

    Article  CAS  PubMed  Google Scholar 

  29. Changelian PS, Flanagan ME, Ball DJ, Kent CR, Magnuson KS, Martin WH, et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science. 2003;302(5646):875–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011;186(7):4234–43.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshida H, Kimura A, Fukaya T, Sekiya T, Morita R, Shichita T, et al. Low dose CP-690,550 (tofacitinib), a pan-JAK inhibitor, accelerates the onset of experimental autoimmune encephalomyelitis by potentiating Th17 differentiation. Biochem Biophys Res Commun. 2012;418(2):234–40.

    Article  CAS  PubMed  Google Scholar 

  32. Conklyn M, Andresen C, Changelian P, Kudlacz E. The JAK3 inhibitor CP-690550 selectively reduces NK and CD8+ cell numbers in cynomolgus monkey blood following chronic oral dosing. J Leukoc Biol. 2004;76(6):1248–55.

    Article  CAS  PubMed  Google Scholar 

  33. van Gurp E, Weimar W, Gaston R, Brennan D, Mendez R, Pirsch J, et al. Phase 1 dose-escalation study of CP-690 550 in stable renal allograft recipients: preliminary findings of safety, tolerability, effects on lymphocyte subsets and pharmacokinetics. Am J Transplant: Off J Am Soc Transplant Am Soc Transplant Surg. 2008;8(8):1711–8.

    Article  Google Scholar 

  34. Kudlacz E, Conklyn M, Andresen C, Whitney-Pickett C, Changelian P. The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia. Eur J Pharmacol. 2008;582(1–3):154–61.

    Article  CAS  PubMed  Google Scholar 

  35. Onuora S. Experimental arthritis: JAK inhibition with tofacitinib curbs RANKL-induced joint damage. Nat Rev Rheumatol. 2012;8(10):564.

    Article  PubMed  Google Scholar 

  36. Rosengren S, Corr M, Firestein GS, Boyle DL. The JAK inhibitor CP-690,550 (tofacitinib) inhibits TNF-induced chemokine expression in fibroblast-like synoviocytes: autocrine role of type I interferon. Ann Rheum Dis. 2012;71(3):440–7.

    Article  CAS  PubMed  Google Scholar 

  37. Yokoyama S, Perera PY, Waldmann TA, Hiroi T, Perera LP. Tofacitinib, a Janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease. J Clin Immunol. 2013;33(3):586–94.

    Article  CAS  PubMed  Google Scholar 

  38. Fleischmann R, Kremer J, Cush J, Schulze-Koops H, Connell CA, Bradley JD, et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. New Engl J Med. 2012;367(6):495–507.

    Article  CAS  PubMed  Google Scholar 

  39. van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Garcia Meijide JA, Wagner S, et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. New Engl J Med. 2012;367(6):508–19.

    Google Scholar 

  40. Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C, Rousell S, et al. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. New Engl J Med. 2012;367(7):616–24.

    Article  CAS  PubMed  Google Scholar 

  41. Lu LD, Stump KL, Wallace NH, Dobrzanski P, Serdikoff C, Gingrich DE, et al. Depletion of autoreactive plasma cells and treatment of lupus nephritis in mice using CEP-33779, a novel, orally active, selective inhibitor of JAK2. J Immunol. 2011;187(7):3840–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following individuals for critical reading of the manuscript: Dr. Kiyoshi Hirahara, Dr. Giuseppe Sciumè, Ms. Kathryn Davis, and Dr. Jonathan Mallett.

Disclosure

NIAMS have a Collaborative Research Agreement and Development Agreement (CRADA) with Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Gadina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furumoto, Y., Gadina, M. The Arrival of JAK Inhibitors: Advancing the Treatment of Immune and Hematologic Disorders. BioDrugs 27, 431–438 (2013). https://doi.org/10.1007/s40259-013-0040-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-013-0040-7

Keywords

Navigation