Skip to main content
Log in

Targeting Focal Adhesion Kinase in Fibrotic Diseases

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Fibrotic diseases such as idiopathic pulmonary fibrosis or scleroderma (systemic sclerosis) are chronic fibroproliferative disorders for which there are currently no effective treatments. Dysregulated normal tissue repair process is considered to cause a fibrotic response culminating in compromised organ function due to excess extracellular matrix deposition. The mechanisms underlying the pathophysiology of fibrosis are poorly understood. Recent findings suggest that focal adhesion kinase (FAK) plays a key role in development of fibrotic disorders, and it appears to be an attractive target for antifibrotic therapy. Here, we review the emerging role of FAK as a key regulator of fibrotic signaling and its potential as a future therapeutic target to counteract fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Smad family member 3: the SMAD proteins are homologs of both the Drosophila protein, mothers against decapentaplegic (MAD) and the Caenorhabditis elegans protein SMA (from gene sma for small body size).

References

  1. Katzenstein AL, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1301–15.

    Article  PubMed  CAS  Google Scholar 

  2. Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117(3):557–67.

    Article  PubMed  CAS  Google Scholar 

  3. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 2007;117(3):524–9.

    Article  PubMed  CAS  Google Scholar 

  4. Gabbiani G. The myofibroblast: a key cell for wound healing and fibrocontractive diseases. Prog Clin Biol Res. 1981;54:183–94.

    PubMed  CAS  Google Scholar 

  5. Chen SJ, et al. Stimulation of type I collagen transcription in human skin fibroblasts by TGF-beta: involvement of Smad 3. J Invest Dermatol. 1999;112(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  6. Pannu J, et al. Increased levels of transforming growth factor beta receptor type I and up-regulation of matrix gene program: a model of scleroderma. Arthritis Rheum. 2006;54(9):3011–21.

    Article  PubMed  CAS  Google Scholar 

  7. Ishida W, et al. Intracellular TGF-beta receptor blockade abrogates Smad-dependent fibroblast activation in vitro and in vivo. J Invest Dermatol. 2006;126(8):1733–44.

    Article  PubMed  CAS  Google Scholar 

  8. Sime PJ, et al. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J Clin Invest. 1997;100(4):768–76.

    Article  PubMed  CAS  Google Scholar 

  9. Lagares D, et al. Endothelin 1 contributes to the effect of transforming growth factor beta1 on wound repair and skin fibrosis. Arthritis Rheum. 2010;62(3):878–89.

    Article  PubMed  CAS  Google Scholar 

  10. Serini G, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol. 1998;142(3):873–81.

    Article  PubMed  CAS  Google Scholar 

  11. Shi-Wen X, et al. Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biol. 2007;26(8):625–32.

    Article  PubMed  Google Scholar 

  12. Shi-Wen X, et al. Constitutive ALK5-independent c-Jun N-terminal kinase activation contributes to endothelin-1 overexpression in pulmonary fibrosis: evidence of an autocrine endothelin loop operating through the endothelin A and B receptors. Mol Cell Biol. 2006;26(14):5518–27.

    Article  PubMed  Google Scholar 

  13. Liu F, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190(4):693–706.

    Article  PubMed  CAS  Google Scholar 

  14. Mimura Y, et al. Constitutive phosphorylation of focal adhesion kinase is involved in the myofibroblast differentiation of scleroderma fibroblasts. J Invest Dermatol. 2005;124(5):886–92.

    Article  PubMed  CAS  Google Scholar 

  15. Kanner SB, et al. Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases. Proc Natl Acad Sci USA. 1990;87(9):3328–32.

    Article  PubMed  CAS  Google Scholar 

  16. Hanks SK, et al. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci USA. 1992;89(18):8487–91.

    Article  PubMed  CAS  Google Scholar 

  17. Kornberg L, et al. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem. 1992;267(33):23439–42.

    PubMed  CAS  Google Scholar 

  18. Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol. 2005;6(1):56–68.

    Article  PubMed  CAS  Google Scholar 

  19. Parsons JT. Focal adhesion kinase: the first ten years. J Cell Sci. 2003;116(Pt 8):1409–16.

    Article  PubMed  CAS  Google Scholar 

  20. Girault JA, et al. The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem Sci. 1999;24(2):54–7.

    Article  PubMed  CAS  Google Scholar 

  21. Sieg DJ, et al. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000;2(5):249–56.

    Article  PubMed  CAS  Google Scholar 

  22. Streblow DN, et al. Human cytomegalovirus chemokine receptor US28-induced smooth muscle cell migration is mediated by focal adhesion kinase and Src. J Biol Chem. 2003;278(50):50456–65.

    Article  PubMed  CAS  Google Scholar 

  23. Schaller MD, et al. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol. 1995;130(5):1181–7.

    Article  PubMed  CAS  Google Scholar 

  24. Hildebrand JD, Schaller MD, Parsons JT. Identification of sequences required for the efficient localization of the focal adhesion kinase, pp 125FAK, to cellular focal adhesions. J Cell Biol. 1993;123(4):993–1005.

    Article  PubMed  CAS  Google Scholar 

  25. Schaller MD, Borgman CA, Parsons JT. Autonomous expression of a noncatalytic domain of the focal adhesion-associated protein tyrosine kinase pp 125FAK. Mol Cell Biol. 1993;13(2):785–91.

    PubMed  CAS  Google Scholar 

  26. Toutant M, et al. Alternative splicing controls the mechanisms of FAK autophosphorylation. Mol Cell Biol. 2002;22(22):7731–43.

    Article  PubMed  CAS  Google Scholar 

  27. Calalb MB, Polte TR, Hanks SK. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol. 1995;15(2):954–63.

    PubMed  CAS  Google Scholar 

  28. Schaller MD, et al. Autophosphorylation of the focal adhesion kinase, pp 125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol. 1994;14(3):1680–8.

    PubMed  CAS  Google Scholar 

  29. Owen JD, et al. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol Cell Biol. 1999;19(7):4806–18.

    PubMed  CAS  Google Scholar 

  30. Owens LV, et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995;55(13):2752–5.

    PubMed  CAS  Google Scholar 

  31. Zhang C, et al. Focal adhesion kinase expressed by nerve cell lines shows increased tyrosine phosphorylation in response to Alzheimer’s A beta peptide. J Biol Chem. 1994;269(41):25247–50.

    PubMed  CAS  Google Scholar 

  32. Shahrara S, et al. Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues. Arthritis Res Ther. 2007;9(5):R112.

    Article  PubMed  Google Scholar 

  33. Franchini KG, Clemente CF, Marin TM. Focal adhesion kinase signaling in cardiac hypertrophy and failure. Braz J Med Biol Res. 2009;42(1):44–52.

    Article  PubMed  CAS  Google Scholar 

  34. Rice DC, et al. Src autophosphorylation is an early event in pressure-mediated signaling pathways in isolated resistance arteries. Hypertension. 2002; 39(2 Pt 2): 502–7.

    Google Scholar 

  35. Morla AO, Mogford JE. Control of smooth muscle cell proliferation and phenotype by integrin signaling through focal adhesion kinase. Biochem Biophys Res Commun. 2000;272(1):298–302.

    Article  PubMed  CAS  Google Scholar 

  36. Thannickal VJ, et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem. 2003;278(14):12384–9.

    Article  PubMed  CAS  Google Scholar 

  37. Vittal R, et al. Modulation of prosurvival signaling in fibroblasts by a protein kinase inhibitor protects against fibrotic tissue injury. Am J Pathol. 2005;166(2):367–75.

    Article  PubMed  CAS  Google Scholar 

  38. Shi-wen X, et al. Requirement of transforming growth factor beta-activated kinase 1 for transforming growth factor beta-induced alpha-smooth muscle actin expression and extracellular matrix contraction in fibroblasts. Arthritis Rheum. 2009;60(1):234–41.

    Article  PubMed  Google Scholar 

  39. Liu S, et al. FAK is required for TGFbeta-induced JNK phosphorylation in fibroblasts: implications for acquisition of a matrix-remodeling phenotype. Mol Biol Cell. 2007;18(6):2169–78.

    Article  PubMed  CAS  Google Scholar 

  40. Hayashida T, et al. MAP-kinase activity necessary for TGFbeta1-stimulated mesangial cell type I collagen expression requires adhesion-dependent phosphorylation of FAK tyrosine 397. J Cell Sci. 2007;120(Pt 23):4230–40.

    Article  PubMed  CAS  Google Scholar 

  41. Dun ZN, et al. Specific shRNA targeting of FAK influenced collagen metabolism in rat hepatic stellate cells. World J Gastroenterol. 2010;16(32):4100–6.

    Article  PubMed  CAS  Google Scholar 

  42. Deng B, et al. Focal adhesion kinase mediates TGF-beta1-induced renal tubular epithelial-to-mesenchymal transition in vitro. Mol Cell Biochem. 2010;340(1–2):21–9.

    Article  PubMed  CAS  Google Scholar 

  43. Greenberg RS, et al. FAK-dependent regulation of myofibroblast differentiation. FASEB J. 2006;20(7):1006–8.

    Article  PubMed  CAS  Google Scholar 

  44. Swigris JJ, Brown KK. The role of endothelin-1 in the pathogenesis of idiopathic pulmonary fibrosis. BioDrugs. 2010;24(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  45. Lagares D, et al. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis Rheum. 2012;64(5):1653–64.

    Article  PubMed  CAS  Google Scholar 

  46. Ding Q, et al. Focal adhesion kinase (FAK)-related non-kinase inhibits myofibroblast differentiation through differential MAPK activation in a FAK-dependent manner. J Biol Chem. 2008;283(40):26839–49.

    Article  PubMed  CAS  Google Scholar 

  47. Thomas PE, et al. PGE(2) inhibition of TGF-beta1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling. Am J Physiol Lung Cell Mol Physiol. 2007;293(2):L417–28.

    Article  PubMed  CAS  Google Scholar 

  48. Liu S, et al. Loss of beta1 integrin in mouse fibroblasts results in resistance to skin scleroderma in a mouse model. Arthritis Rheum. 2009;60(9):2817–21.

    Article  PubMed  CAS  Google Scholar 

  49. Kulkarni AA, et al. PPAR-gamma ligands repress TGFbeta-induced myofibroblast differentiation by targeting the PI3 K/Akt pathway: implications for therapy of fibrosis. PLoS One. 2011;6(1):e15909.

    Article  PubMed  CAS  Google Scholar 

  50. Jelaska A, Korn JH. Role of apoptosis and transforming growth factor beta1 in fibroblast selection and activation in systemic sclerosis. Arthritis Rheum. 2000;43(10):2230–9.

    Article  PubMed  CAS  Google Scholar 

  51. Xia H, et al. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem. 2004;279(31):33024–34.

    Article  PubMed  CAS  Google Scholar 

  52. Wen LP, et al. Cleavage of focal adhesion kinase by caspases during apoptosis. J Biol Chem. 1997;272(41):26056–61.

    Article  PubMed  CAS  Google Scholar 

  53. Horowitz JC, et al. Combinatorial activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal. 2007;19(4):761–71.

    Article  PubMed  CAS  Google Scholar 

  54. Reif S, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem. 2003;278(10):8083–90.

    Article  PubMed  CAS  Google Scholar 

  55. Xia H, et al. Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med. 2008;205(7):1659–72.

    Article  PubMed  CAS  Google Scholar 

  56. Horowitz JC, et al. Survivin expression induced by endothelin-1 promotes myofibroblast resistance to apoptosis. Int J Biochem Cell Biol. 2012;44(1):158–69.

    Article  PubMed  CAS  Google Scholar 

  57. Pardo A, Selman M. Molecular mechanisms of pulmonary fibrosis. Front Biosci. 2002;7:d1743–61.

    Article  PubMed  CAS  Google Scholar 

  58. Ilic D, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 1995;377(6549):539–44.

    Article  PubMed  CAS  Google Scholar 

  59. Kumagai N, et al. Lysophosphatidic acid induces tyrosine phosphorylation and activation of MAP-kinase and focal adhesion kinase in cultured Swiss 3T3 cells. FEBS Lett. 1993;329(3):273–6.

    Article  PubMed  CAS  Google Scholar 

  60. Chen HC, Guan JL. Stimulation of phosphatidylinositol 3’-kinase association with foca adhesion kinase by platelet-derived growth factor. J Biol Chem. 1994;269(49):31229–33.

    PubMed  CAS  Google Scholar 

  61. Tangkijvanich P, et al. Platelet-derived growth factor-BB and lysophosphatidic acid distinctly regulate hepatic myofibroblast migration through focal adhesion kinase. Exp Cell Res. 2002;281(1):140–7.

    Article  PubMed  CAS  Google Scholar 

  62. Cai GQ, et al. Downregulation of FAK-related non-kinase mediates the migratory phenotype of human fibrotic lung fibroblasts. Exp Cell Res. 2010;316(9):1600–9.

    Article  PubMed  CAS  Google Scholar 

  63. Wong VW, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med. 2012;18(1):148–52.

    Article  CAS  Google Scholar 

  64. Essayem S, et al. Hair cycle and wound healing in mice with a keratinocyte-restricted deletion of FAK. Oncogene. 2006;25(7):1081–9.

    Article  PubMed  CAS  Google Scholar 

  65. Schultze A, Fiedler W. Therapeutic potential and limitations of new FAK inhibitors in the treatment of cancer. Expert Opin Investig Drugs. 2010;19(6):777–88.

    Article  PubMed  CAS  Google Scholar 

  66. Schultze A, Fiedler W. Clinical importance and potential use of small molecule inhibitors of focal adhesion kinase. Anticancer Agents Med Chem. 2011;11(7):593–9.

    Article  PubMed  CAS  Google Scholar 

  67. Roberts WG, et al. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res. 2008;68(6):1935–44.

    Article  PubMed  CAS  Google Scholar 

  68. Wendt MK, Schiemann WP. Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-beta signaling and metastasis. Breast Cancer Res. 2009;11(5):R68.

    Article  PubMed  Google Scholar 

  69. Garamszegi N, et al. Extracellular matrix-induced transforming growth factor-beta receptor signaling dynamics. Oncogene. 2010;29(16):2368–80.

    Article  PubMed  CAS  Google Scholar 

  70. Kim KK, et al. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest. 2009;119(1):213–24.

    PubMed  CAS  Google Scholar 

  71. Liu S, et al. Expression of integrin beta1 by fibroblasts is required for tissue repair in vivo. J Cell Sci. 2010;123(Pt 21):3674–82.

    Article  PubMed  CAS  Google Scholar 

  72. Planas-Silva MD, et al. Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer. Biochem Biophys Res Commun. 2006;341(1):73–81.

    Article  PubMed  CAS  Google Scholar 

  73. Bolos V, et al. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther. 2010;3:83–97.

    Article  PubMed  CAS  Google Scholar 

  74. Hong S, et al. The role of focal adhesion kinase in the TGF-beta-induced myofibroblast transdifferentiation of human Tenon’s fibroblasts. Korean J Ophthalmol. 2012;26(1):45–8.

    Article  PubMed  CAS  Google Scholar 

  75. Dalla Costa AP, et al. FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovasc Res. 2010; 86(3): 421–31.

    Google Scholar 

  76. Chan MW, et al. FAK, PIP5KIgamma and gelsolin cooperatively mediate force-induced expression of alpha-smooth muscle actin. J Cell Sci. 2009;122(Pt 15):2769–81.

    Article  PubMed  CAS  Google Scholar 

  77. DiMichele LA, et al. Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circ Res. 2006;99(6):636–45.

    Article  PubMed  CAS  Google Scholar 

  78. Peng X, et al. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest. 2006;116(1):217–27.

    Article  PubMed  CAS  Google Scholar 

  79. Clemente CF, et al. Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice. Circ Res. 2007;101(12):1339–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to conduct this study or prepare this manuscript.

Conflict of interest

The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohit Kapoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagares, D., Kapoor, M. Targeting Focal Adhesion Kinase in Fibrotic Diseases. BioDrugs 27, 15–23 (2013). https://doi.org/10.1007/s40259-012-0003-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-012-0003-4

Keywords

Navigation