Skip to main content
Log in

Anti-IL-17 Medications Used in the Treatment of Plaque Psoriasis and Psoriatic Arthritis: A Comprehensive Review

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Our ability to successfully treat patients with moderate to severe psoriasis has improved significantly over the last several years with the development of more targeted therapies. IL-17A, a member of the IL-17 family of interleukins, is involved in regulating the innate and adaptive immune systems and has been identified as a key cytokine involved in the pathogenesis of psoriasis and psoriatic arthritis. In this review, we summarize our understanding of IL-17 and its role in psoriasis and psoriatic arthritis, as well as key findings from clinical trials using anti-IL-17 medications for the treatment of the aforementioned diseases. Secukinumab, ixekizumab, and brodalumab are three anti-IL-17 medications used for treating psoriasis, of which only secukinumab is FDA approved; ixekizumab and brodalumab remain under clinical development. Results from clinical trials show that these three medications are highly effective in treating psoriasis and appear to be as safe as other biologic treatments that are FDA approved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rachakonda TD, Schupp CW, Armstrong AW. Psoriasis prevalence among adults in the United States. J Am Acad Dermatol. 2014;70:512–6.

    Article  PubMed  Google Scholar 

  2. Feldman SR, Malakouti M, Koo JY. Social impact of the burden of psoriasis: effects on patients and practice. Dermatol Online J. 2014;20(8). pii: 13030/qt48r4w8h2.

  3. McDonald CJ, Bertino JR. Parenteral methotrexate in psoriasis: a report on the efficacy and toxicity of long-term intermittent treatment. Arch Dermatol. 1969;100:655–68.

    Article  PubMed  CAS  Google Scholar 

  4. Müller W, Graf U. The treatment of psoriasis-arthritis with cyclosporin A, a new immunosuppressive agent. Schweiz Med Wochenschr. 1981;111:408–13.

    PubMed  Google Scholar 

  5. Martin A, Gutierrez E, Muglia J, McDonald CJ, Guzzo C, Gottlieb A, et al. A multicenter dose-escalation trial with denileukin diftitox (ONTAK, DAB(389)IL-2) in patients with severe psoriasis. J Am Acad Dermatol. 2001;45:871–81.

    Article  PubMed  CAS  Google Scholar 

  6. Uyemura K, Yamamura M, Fivenson DF, Modlin RL, Nickoloff BJ. The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response. J Invest Dermatol. 1993;101:701–5.

    Article  PubMed  CAS  Google Scholar 

  7. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25:821–52.

    Article  PubMed  CAS  Google Scholar 

  8. Harper EG, Guo C, Rizzo H, Lillis JV, Kurtz SE, Skorcheva I, et al. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J Invest Dermatol. 2009;129:2175–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Cai Y, Fleming C, Yan J. Dermal γδ T cells–a new player in the pathogenesis of psoriasis. Int Immunopharmacol. 2013;16:388–91.

    Article  PubMed  CAS  Google Scholar 

  10. Press Announcements—FDA approves new psoriasis drug Cosentyx [Internet]. Available from: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm430969.htm. Cited 29 Mar 2015.

  11. Papp KA, Leonardi C, Menter A, Ortonne J-P, Krueger JG, Kricorian G, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366:1181–9.

    Article  PubMed  CAS  Google Scholar 

  12. Papp KA, Langley RG, Sigurgeirsson B, Abe M, Baker DR, Konno P, et al. Efficacy and safety of secukinumab in the treatment of moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled phase II dose-ranging study. Br J Dermatol. 2013;168:412–21.

    Article  PubMed  CAS  Google Scholar 

  13. Rich P, Sigurgeirsson B, Thaci D, Ortonne J-P, Paul C, Schopf RE, et al. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study. Br J Dermatol. 2013;168:402–11.

    Article  PubMed  CAS  Google Scholar 

  14. Paul C, Reich K, Gottlieb AB, Mrowietz U, Philipp S, Nakayama J, et al. Secukinumab improves hand, foot and nail lesions in moderate-to-severe plaque psoriasis: subanalysis of a randomized, double-blind, placebo-controlled, regimen-finding phase 2 trial. J Eur Acad Dermatol Venereol JEADV. 2014;28:1670–5.

    Article  PubMed  CAS  Google Scholar 

  15. Sigurgeirsson B, Kircik L, Nemoto O, Mikazans I, Haemmerle S, Thurston HJ, et al. Secukinumab improves the signs and symptoms of moderate-to-severe plaque psoriasis in subjects with involvement of hands and/or feet: subanalysis of a randomized, double-blind, placebo-controlled, phase 2 dose-ranging study. J Eur Acad Dermatol Venereol JEADV. 2014;28:1127–9.

    Article  PubMed  CAS  Google Scholar 

  16. Reich K, Papp KA, Matheson RT, Tu JH, Bissonnette R, Bourcier M, et al. Evidence that a neutrophil–keratinocyte crosstalk is an early target of IL-17A inhibition in psoriasis. Exp Dermatol. 2015;24:529–35.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CEM, Papp K, et al. Secukinumab in plaque psoriasis–results of two phase 3 trials. N Engl J Med. 2014;371:326–38.

    Article  PubMed  Google Scholar 

  18. Thaçi D, Blauvelt A, Reich K, Tsai T-F, Vanaclocha F, Kingo K, et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: CLEAR, a randomized controlled trial. Dermatol: J Am Acad; 2015.

    Google Scholar 

  19. Mrowietz U, Leonardi CL, Girolomoni G, Toth D, Morita A, Balki SA, et al. Secukinumab retreatment-as-needed versus fixed-interval maintenance regimen for moderate to severe plaque psoriasis: a randomized, double-blind, noninferiority trial (SCULPTURE). J Am Acad Dermatol. 2015;73(27–36):e1.

    PubMed  Google Scholar 

  20. Thaçi D, Humeniuk J, Frambach Y, Bissonnette R, Goodman JJ, Shevade S, et al. Secukinumab in psoriasis: randomized, controlled phase 3 trial results assessing the potential to improve treatment response in partial responders (STATURE). Br J Dermatol. 2015;173(3):777–87.

    Article  PubMed  Google Scholar 

  21. Blauvelt A, Prinz JC, Gottlieb AB, Kingo K, Sofen H, Ruer-Mulard M, et al. Secukinumab administration by pre-filled syringe: efficacy, safety and usability results from a randomized controlled trial in psoriasis (FEATURE). Br J Dermatol. 2015;172:484–93.

    Article  PubMed  CAS  Google Scholar 

  22. Paul C, Lacour J-P, Tedremets L, Kreutzer K, Jazayeri S, Adams S, et al. Efficacy, safety and usability of secukinumab administration by autoinjector/pen in psoriasis: a randomized, controlled trial (JUNCTURE). J Eur Acad Dermatol Venereol JEADV. 2015;29(6):1082–90.

    Article  PubMed  CAS  Google Scholar 

  23. Cosentyx.pdf [Internet]. Available from: http://www.pharma.us.novartis.com/product/pi/pdf/cosentyx.pdf. Cited 30 May 2015.

  24. Ward NL, Guettner A, Sands B, Cooper S. Secukinumab safety and tolerability in subjects with moderate to severe plaque psoriasis: a pooled subgroup analysis of 10 clinical studies evaluating exacerbation of Crohn’s disease. J Am Acad Dermatol. 2014;70:AB188.

  25. Blauvelt A. Candidiasis in secukinumab-treated subjects is non-serious and transient: a pooled analysis of data from 10 phase 2 and 3 clinical trials in psoriasis. Chicago, IL; 2014.

  26. Blauvelt A, Lebwohl MG, Bissonnette R. IL-23/IL-17A dysfunction phenotypes inform possible clinical effects from anti-IL-17A therapies. J Invest Dermatol. [Internet]. 2015. Available from: http://www.nature.com.ezproxy3.lhl.uab.edu/jid/journal/vaop/ncurrent/full/jid2015144a.html. Cited 12 Jul 2015.

  27. Secukinumab (AIN457) Advisory Committee Briefing Material: Available For Public Release. Prepared by Novartis Pharmaceuticals Co [Internet]. Available from: http://webcache.googleusercontent.com/search?q=cache:O9TwOW7TnMkJ:www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/DermatologicandOphthalmicDrugsAdvisoryCommittee/UCM419023.pdf+&cd=1&hl=en&ct=clnk&gl=us. Cited 1 May 2015.

  28. Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E, et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366:1190–9.

    Article  PubMed  CAS  Google Scholar 

  29. Langley RG, Rich P, Menter A, Krueger G, Goldblum O, Dutronc Y, et al. Improvement of scalp and nail lesions with ixekizumab in a phase 2 trial in patients with chronic plaque psoriasis. J Eur Acad Dermatol Venereol. JEADV. 2015;29(9):1763–70.

    Article  PubMed  CAS  Google Scholar 

  30. Lilly’s ixekizumab superior to etanercept and placebo in phase 3 psoriasis studies (NYSE:LLY) [Internet]. Available from: https://investor.lilly.com/releasedetail.cfm?releaseid=867193. Cited 30 Jun 2015.

  31. Griffiths CEM, Reich K, Lebwohl M, van de Kerkhof P, Paul C, Menter A, et al. Comparison of ixekizumab with etanercept or placebo in moderate-to-severe psoriasis (UNCOVER-2 and UNCOVER-3): results from two phase 3 randomised trials. Lancet. 2015;386(9993):541–51.

    Article  PubMed  CAS  Google Scholar 

  32. Saeki H, Nakagawa H, Ishii T, Morisaki Y, Aoki T, Berclaz P-Y, et al. Efficacy and safety of open-label ixekizumab treatment in Japanese patients with moderate-to-severe plaque psoriasis, erythrodermic psoriasis and generalized pustular psoriasis. J Eur Acad Dermatol Venereol. 2015;29:1148–55.

    Article  PubMed  CAS  Google Scholar 

  33. Gordon KB, Leonardi CL, Lebwohl M, Blauvelt A, Cameron GS, Braun D, et al. A 52-week, open-label study of the efficacy and safety of ixekizumab, an anti-interleukin-17A monoclonal antibody, in patients with chronic plaque psoriasis. J Am Acad Dermatol. 2014;71:1176–82.

    Article  PubMed  CAS  Google Scholar 

  34. Lebwohl M, Strober B, Menter A, Gordon K, Weglowska J, Puig L, et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med. 2015;373:1318–28.

    Article  PubMed  Google Scholar 

  35. Amgen. Media—news release [Internet]. Available from: http://www.amgen.com/media/media_pr_detail.jsp?releaseID=1929460. Cited 1 May 2015.

  36. Papp K, Leonardi C, Menter A, Thompson EHZ, Milmont CE, Kricorian G, et al. Safety and efficacy of brodalumab for psoriasis after 120 weeks of treatment. J Am Acad Dermatol. 2014;71(1183–90):e3.

    PubMed  Google Scholar 

  37. Kurd SK, Troxel AB, Crits-Christoph P, Gelfand JM. The risk of depression, anxiety, and suicidality in patients with psoriasis: a population-based cohort study. Arch Dermatol. 2010;146:891–5.

    PubMed  PubMed Central  Google Scholar 

  38. Langham S, Langham J, Goertz H-P, Ratcliffe M. Large-scale, prospective, observational studies in patients with psoriasis and psoriatic arthritis: a systematic and critical review. BMC Med Res Methodol. 2011;11:32.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boehncke W-H, Menter A. Burden of disease: psoriasis and psoriatic arthritis. Am J Clin Dermatol. 2013;14:377–88.

    Article  PubMed  Google Scholar 

  40. Kirkham BW, Kavanaugh A, Reich K. Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology. 2014;141:133–42.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. de Vlam K, Gottlieb AB, Mease PJ. Current concepts in psoriatic arthritis: pathogenesis and management. Acta Derm Venereol. 2014;94:627–34.

    Article  PubMed  Google Scholar 

  42. Mease PJ. Inhibition of interleukin-17, interleukin-23 and the TH17 cell pathway in the treatment of psoriatic arthritis and psoriasis. Curr Opin Rheumatol. 2015;27:127–33.

    Article  PubMed  CAS  Google Scholar 

  43. Sanford M, McKeage K. Secukinumab: first global approval. Drugs. 2015;75:329–38.

    Article  PubMed  CAS  Google Scholar 

  44. McInnes IB, Sieper J, Braun J, Emery P, van der Heijde D, Isaacs JD, et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann Rheum Dis. 2014;73:349–56.

    Article  PubMed  CAS  Google Scholar 

  45. McInnes IB, Mease PJ, Kirkham B, Kavanaugh A, Ritchlin CT, Rahman P, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet [Internet]. Available from: http://www.sciencedirect.com/science/article/pii/S0140673615611345. Cited 12 Jul 2015.

  46. Mease PJ, McInnes IB, Kavanaugh A, van der Heijde D. Secukinumab, a human anti–interleukin-17A monoclonal antibody, improves active psoriatic arthritis and inhibits radiographic progression: efficacy and safety data from a phase 3 randomized, multicenter, double-blind, placebo-controlled study [Internet]. ACR Abstr. Available from: http://acrabstracts.org/abstracts/secukinumab-a-human-anti-interleukin-17a-monoclonal-antibody-improves-active-psoriatic-arthritis-and-inhibits-radiographic-progression-efficacy-and-safety-data-from-a-phase-3-randomize/. Cited 12 Jul 2015.

  47. Lilly’s ixekizumab met primary endpoint in a phase 3 study investigating the treatment of psoriatic arthritis—Apr 20, 2015 [Internet]. Available from: http://lilly.mediaroom.com/index.php?s=9042&item=137406. Cited 16 May 2015.

  48. Mease PJ, Genovese MC, Greenwald MW, Ritchlin CT, Beaulieu AD, Deodhar A, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370:2295–306.

    Article  PubMed  Google Scholar 

  49. Nestle FO, Turka LA, Nickoloff BJ. Characterization of dermal dendritic cells in psoriasis. Autostimulation of T lymphocytes and induction of Th1 type cytokines. J Clin Invest. 1994;94:202–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Schlaak JF, Buslau M, Jochum W, Hermann E, Girndt M, Gallati H, et al. T cells involved in psoriasis vulgaris belong to the Th1 subset. J Invest Dermatol. 1994;102:145–9.

    Article  PubMed  CAS  Google Scholar 

  51. Austin LM, Ozawa M, Kikuchi T, Walters IB, Krueger JG. The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J Invest Dermatol. 1999;113:752–9.

    Article  PubMed  CAS  Google Scholar 

  52. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang Y-H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  PubMed  CAS  Google Scholar 

  54. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129:1339–50.

    Article  PubMed  Google Scholar 

  55. Levin AA, Gottlieb AB. Specific targeting of interleukin-23p19 as effective treatment for psoriasis. J Am Acad Dermatol. 2014;70:555–61.

    Article  PubMed  CAS  Google Scholar 

  56. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  PubMed  CAS  Google Scholar 

  57. Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin Immunol. 2007;19:362–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol. 2007;25:221–42.

    Article  PubMed  CAS  Google Scholar 

  59. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14:585–600.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Koga C, Kabashima K, Shiraishi N, Kobayashi M, Tokura Y. Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol. 2008;128:2625–30.

    Article  PubMed  CAS  Google Scholar 

  61. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9:556–67.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett M, Yalavarthi S, et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol Baltim Md. 1950;2011(187):490–500.

    Google Scholar 

  63. Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG, et al. The emerging role of IL-17 in the pathogenesis of psoriasis: preclinical and clinical findings. J Invest Dermatol. 2013;133:17–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Chiricozzi A, Nograles KE, Johnson-Huang LM, Fuentes-Duculan J, Cardinale I, Bonifacio KM, et al. IL-17 induces an expanded range of downstream genes in reconstituted human epidermis model. PloS One. 2014;9:e90284.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Raychaudhuri SP, Raychaudhuri SK, Genovese MC. IL-17 receptor and its functional significance in psoriatic arthritis. Mol Cell Biochem. 2012;359:419–29.

    Article  PubMed  CAS  Google Scholar 

  66. Jandus C, Bioley G, Rivals J-P, Dudler J, Speiser D, Romero P. Increased numbers of circulating polyfunctional Th17 memory cells in patients with seronegative spondylarthritides. Arthritis Rheum. 2008;58:2307–17.

    Article  PubMed  Google Scholar 

  67. Letko E, Yeh S, Foster CS, Pleyer U, Brigell M, Grosskreutz CL, et al. Efficacy and safety of intravenous secukinumab in noninfectious uveitis requiring steroid-sparing immunosuppressive therapy. Ophthalmology. 2015;122(5):939–48.

    Article  PubMed  Google Scholar 

  68. Dick AD, Tugal-Tutkun I, Foster S, Zierhut M, Melissa Liew SH, Bezlyak V, et al. Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology. 2013;120:777–87.

    Article  PubMed  Google Scholar 

  69. Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Aelion JA, et al. One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol. 2014;41:414–21.

    Article  PubMed  CAS  Google Scholar 

  70. Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72:863–9.

    Article  PubMed  CAS  Google Scholar 

  71. Genovese MC, Greenwald M, Cho C-S, Berman A, Jin L, Cameron GS, et al. A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol Hoboken NJ. 2014;66:1693–704.

    Article  CAS  Google Scholar 

  72. Martin DA, Churchill M, Flores-Suarez L, Cardiel MH, Wallace D, Martin R, et al. A phase Ib multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant rheumatoid arthritis. Arthritis Res Ther. 2013;15:R164.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, van der Heijde D, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382:1705–13.

    Article  PubMed  CAS  Google Scholar 

  74. Golden JB, McCormick TS, Ward NL. IL-17 in psoriasis: implications for therapy and cardiovascular co-morbidities. Cytokine. 2013;62:195–201.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Abbas A, Gregersen I, Holm S, Daissormont I, Bjerkeli V, Krohg-Sørensen K, et al. Interleukin 23 levels are increased in carotid atherosclerosis: possible role for the interleukin 23/interleukin 17 axis. Stroke J Cereb Circ. 2015;46:793–9.

    Article  CAS  Google Scholar 

  76. Wang Y, Gao H, Loyd CM, Fu W, Diaconu D, Liu S, et al. Chronic skin-specific inflammation promotes vascular inflammation and thrombosis. J Invest Dermatol. 2012;132:2067–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Nardinocchi L, Sonego G, Passarelli F, Avitabile S, Scarponi C, Failla CM, et al. Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol. 2015;45:922–31.

    Article  PubMed  CAS  Google Scholar 

  78. He D, Li H, Yusuf N, Elmets C, Athar M, Katiyar S, et al. IL-17 receptor A deficient mice are resistant to chemical carcinogen induced cutaneous tumors. J Invest Dermatol. 2012;7(2):e32126.

    CAS  Google Scholar 

  79. He D, Li H, Yusuf N, Elmets CA, Athar M, Katiyar SK, et al. IL-17 mediated inflammation promotes tumor growth and progression in the skin. PloS One. 2012;7:e32126.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. He D, Li H, Yusuf N, Elmets CA, Li J, Mountz JD, et al. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol Baltim Md. 1950;2010(184):2281–8.

    Google Scholar 

  81. Liu Y, Ho RC-M, Mak A. The role of interleukin (IL)-17 in anxiety and depression of patients with rheumatoid arthritis. Int J Rheum Dis. 2012;15:183–7.

    Article  PubMed  CAS  Google Scholar 

  82. Kim J-W, Kim Y-K, Hwang J-A, Yoon H-K, Ko Y-H, Han C, et al. Plasma levels of IL-23 and IL-17 before and after antidepressant treatment in patients with major depressive disorder. Psychiatry Investig. 2013;10:294–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Amgen—Media-news release [Internet]. Available from: http://www.amgen.com/media/media_pr_detail.jsp?year=2015&releaseID=2052862. Cited 30 May 2015.

  84. AstraZeneca—AstraZeneca and Valeant Pharmaceuticals to partner on brodalumab [Internet]. Available from: http://www.astrazeneca.com/Media/Press-releases/Article/20150901–astrazeneca-and-valeant-pharmaceuticals-partnership. Cited 8 Sep 2015.

  85. Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods San Diego Calif. 2005;36:3–10.

    Article  CAS  Google Scholar 

  86. Chang SH, Dong C. Signaling of interleukin-17 family cytokines in immunity and inflammation. Cell Signal. 2011;23:1069–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Angkasekwinai P, Park H, Wang Y-H, Wang Y-H, Chang SH, Corry DB, et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J Exp Med. 2007;204:1509–17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med. 2006;203:1105–16.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Katugampola RP, Lewis VJ, Finlay AY. The Dermatology Life Quality Index: assessing the efficacy of biological therapies for psoriasis. Br J Dermatol. 2007;156:945–50.

    Article  PubMed  CAS  Google Scholar 

  90. Revicki DA, Willian MK, Menter A, Saurat J-H, Harnam N, Kaul M. Relationship between clinical response to therapy and health-related quality of life outcomes in patients with moderate to severe plaque psoriasis. Dermatol Basel Switz. 2008;216:260–70.

    Article  Google Scholar 

  91. Torii H, Sato N, Yoshinari T, Nakagawa H, Japanese Infliximab Study Investigators. Dramatic impact of a Psoriasis Area and Severity Index 90 response on the quality of life in patients with psoriasis: an analysis of Japanese clinical trials of infliximab. J Dermatol. 2012;39:253–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Medical Affairs at Lilly and Novartis for their assistance in reviewing the manuscript for accuracy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boni E. Elewski.

Ethics declarations

Conflict of interest statement

Dr. Canavan, Mr. Evans, and Dr. Elmets have no relevant conflicts to disclose. Dr. Cantrell has served on the advisory board for Novartis, Lilly, and Pfizer, and has also traveled to investigator meetings for studies sponsored by Lilly and Novartis. Dr. Elewski has received grant funding from Novartis, Amgen, and Lilly for clinical trials; all funds have gone to the dermatology department. Dr. Elewski has the following consulting conflicts to disclose: Pfizer, Novartis, and Lilly, as well as an honorarium.

Funding source

We received no funding for creating this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canavan, T.N., Elmets, C.A., Cantrell, W.L. et al. Anti-IL-17 Medications Used in the Treatment of Plaque Psoriasis and Psoriatic Arthritis: A Comprehensive Review. Am J Clin Dermatol 17, 33–47 (2016). https://doi.org/10.1007/s40257-015-0162-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-015-0162-4

Keywords

Navigation