Skip to main content
Log in

DFT-supported Mechanistic Understanding of the Ring-opening Polymerization of Cyclic Trithiocarbonates Mediated by Organic Base

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Sulfur-rich polymers are endowed with several enhanced features, such as high refractive index and excellent thermal and mechanical properties, owing to the incorporation of sulfur atoms into the polymer main chain. As an important category of sulfur-rich polymers, polytrithiocarbonates can be efficiently synthesized through ring-opening polymerization(ROP) of cyclic trithiocarbonates(CTCs) mediated by 1,5,7-triazabicyclo[4.4.0] dec-5-ene(TBD) and benzyl mercaptan(BnSH). However, the mechanistic investigations of this reaction are limited. In this study, we attempted to understand this reaction by simulating chain initiation, propagation, and termination in the ROP of CTCs using density functional theory(DFT) calculations. As demonstrated, the acceleration of the ROP of δ-CTC by BnSH can be attributed to the smaller size of BnS compared to TBD when nucleophilic attacking, and [TBDH]+ enhancing the interaction with the monomer and stabilizing the generated active species in the initiating process. In addition, the ability of BnSH to tune the topological structures of the final polymers is ascribed to the suppressed transesterification between the thiolate species and the first trithiocarbonate unit initiated by BnS. Furthermore, the limitations that hinder the ROP of five- and six-membered CTCs under general conditions are the unfavored thermodynamic factors, wherein the ROP of six-membered CTC is possible below −75 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Kultys A., Sulfur-Containing Polymers in Encyclopedia of Polymer Science and Technology, 4th Ed., Wiley, Hoboken, 2010

    Google Scholar 

  2. Zhang X-H., Theato P., Sulfur-containing Polymers: from Synthesis to Functional Materials, John Wiley & Sons, Weinheim, 2021

    Book  Google Scholar 

  3. Yue T.-J., Wang L.-Y., Ren W.-M., Polym. Chem., 2021, 12, 6650

    Article  CAS  Google Scholar 

  4. Higashihara T., Ueda M., Macromolecules, 2015, 48, 1915

    Article  CAS  Google Scholar 

  5. Tian T., Hu R., Tang B. Z., J. Am. Chem. Soc., 2018, 140, 6156

    Article  CAS  PubMed  Google Scholar 

  6. Cao W., Dai F., Hu R., Tang B. Z., J. Am. Chem. Soc., 2020, 142, 978

    Article  CAS  PubMed  Google Scholar 

  7. Chung W. J., Griebel J. J., Kim E. T., Yoon H., Simmonds A. G., Ji H. J., Dirlam P. T., Glass R. S., Wie J. J., Nguyen N. A., Guralnick B. W., Park J., Somogui A., Theato P., Mackay M. E., Sung Y. E., Char K., Pyun J., Nat. Chem., 2013, 5, 518

    Article  CAS  PubMed  Google Scholar 

  8. Manthiram A., Fu Y., Chung S. H., Zu C., Su Y. S., Chem. Rev., 2014, 114, 11751

    Article  CAS  PubMed  Google Scholar 

  9. Liu J., Zhou W., Zhao R., Yang Z., Li W., Chao D., Qiao S. Z., Zhao D., J. Am. Chem. Soc., 2021, 143, 15475

    Article  CAS  PubMed  Google Scholar 

  10. Griebel J. J., Nguyen N. A., Astashkin A. V., Glass R. S., Mackay M. E., Char K., Pyun J., ACS Macro Lett., 2014, 3, 1258

    Article  CAS  PubMed  Google Scholar 

  11. Sun Z., Huang H., Li L., Liu L., Chen Y., Macromolecules, 2017, 50, 8505

    Article  CAS  Google Scholar 

  12. Kim D. H., Jang W., Choi K., Choi J. S., Pyun J., Lim J., Char K., Im S. G., Sci. Adv., 2020, 6, eabb5320.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang J., Zang Q., Yang F., Zhang H., Sun J. Z., Tang B. Z., J. Am. Chem. Soc., 2021, 143, 3944

    Article  CAS  PubMed  Google Scholar 

  14. Ji X., Lee K. T., Nazar L. F., Nat. Mater., 2009, 8, 500

    Article  CAS  PubMed  Google Scholar 

  15. Manthiram A., Fu Y., Chung S. H., Zu C., Su Y. S., Chem. Rev., 2014, 114, 11751

    Article  CAS  PubMed  Google Scholar 

  16. Berti C., Marianucci E., Pilati F., Makromol. Chem., 1988, 189, 1323

    Article  CAS  Google Scholar 

  17. Leung L. M., Chan W. H., Leung S. K., J. Polym. Sci. A: Polym. Chem., 1993, 31, 1799

    Article  CAS  Google Scholar 

  18. Nakano K., Tatsumi G., Nozaki K., J. Am. Chem. Soc., 2007, 129, 5116

    Article  Google Scholar 

  19. Kricheldorf H. R., Damrau D. O., Macromol. Chem. Phys., 1998, 199, 2589

    Article  CAS  Google Scholar 

  20. Nemoto N., Sanda F., Endo T., Macromolecules, 2000, 33, 7229

    Article  CAS  Google Scholar 

  21. Zhao J.-Z., Yue T.-J., Ren B.-H., Liu Y., Ren W.-M., Lu X.-B., Macromolecules, 2022, 55, 8651

    Article  CAS  Google Scholar 

  22. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16, Gaussian, Inc., Wallingford CT, 2016

    Google Scholar 

  23. Kitaura K., Morokuma K., Int. J. Quantum. Chem., 1976, 10, 325

    Article  CAS  Google Scholar 

  24. Bickelhaupt F. M., Houk K. N., Angew. Chem. Int. Ed., 2017, 56, 10070

    Article  CAS  Google Scholar 

  25. Liu F., Liang Y., Houk K. N., Acc. Chem. Res., 2017, 50, 2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu T., Chen F. W., J. Comput. Chem., 2012, 33, 580

    Article  PubMed  Google Scholar 

  27. Hong M., Chen E. Y.-X., Nat. Chem., 2016, 8, 42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.21722402, 21674015, 22171038), the China Postdoctoral Science Foundation(Nos.2021050, 2021M690517) and the Scientific Research Foundation of the Educational Department of Liaoning Province, China (No.LJKZ0848).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Kang or Weimin Ren.

Ethics declarations

The authors declare no conflicts of interest.

Supporting Information

40242_2023_3034_MOESM1_ESM.pdf

DFT-supported Mechanistic Understanding of the Ring-opening Polymerization of Cyclic Trithiocarbonates Mediated by Organic Base

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ren, B., Zhao, J. et al. DFT-supported Mechanistic Understanding of the Ring-opening Polymerization of Cyclic Trithiocarbonates Mediated by Organic Base. Chem. Res. Chin. Univ. 39, 772–776 (2023). https://doi.org/10.1007/s40242-023-3034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3034-0

Keywords

Navigation