Skip to main content

Advertisement

Log in

Electronic and Nano-structural Modulation of Co(OH)2 Nanosheets by Fe-Benzenedicarboxylate for Efficient Oxygen Evolution

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Oxygen evolution reaction(OER) plays a key role in the electrochemical conversion and storage processes, but the sluggish kinetics of OER strongly impedes its large-scale applications. We herein reported the in situ growth of Fe-benzenedicarboxylate(Fe-BDC) on Co(OH)2 nanoplates[Fe-BDC/Co(OH)2] that showed remarkably enhanced OER activity than the pristine Co(OH)2. The incorporation of Fe species could enhance the intrinsic OER activity of Co and BDC could increase the electrochemically active surface area(ECSA), thus resulting in dramatically enhanced OER activity. In situ Raman spectroscopy characterization disclosed that Fe-CoOOH reconstructed from Fe-BDC/Co(OH)2 was the real active site for OER. This work highlights the significance of rational tailoring of the nanostructure and electronic structure of Co(OH)2 and provides more opportunities for its widespread applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birdja Y. Y., Pérez-Gallent E., Figueiredo M. C., Göttle A. J., Calle-Vallejo F., Koper M. T. M., Nat. Energy, 2019, 4(9), 732

    Article  CAS  Google Scholar 

  2. Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Nørskov J. K., Jaramillo T. F., Science, 2017, 355(6321), eaad4998

    Article  PubMed  Google Scholar 

  3. Yu Z.-Y., Duan Y., Feng X.-Y., Yu X., Gao M.-R., Yu S.-H., Adv. Mater., 2021, 33(31), 2007100

    Article  CAS  Google Scholar 

  4. Lyu F., Wang Q., Choi S. M., Yin Y., Small, 2019, 15(1), 1804201

    Article  Google Scholar 

  5. Feng C., Faheem M. B., Fu J., Xiao Y., Li C., Li Y., ACS Catal., 2020, 10(7), 4019

    Article  CAS  Google Scholar 

  6. Li Y., Li F.-M., Meng X.-Y., Li S.-N., Zeng J.-H., Chen Y., ACS Catal., 2018, 8(3), 1913

    Article  CAS  Google Scholar 

  7. Qiu B., Wang C., Zhang N., Cai L., Xiong Y., Chai Y., ACS Catal., 2019, 9(7), 6484

    Article  CAS  Google Scholar 

  8. Zhou Q., Chen Y., Zhao G., Lin Y., Yu Z., Xu X., Wang X., Liu H. K., Sun W., Dou S. X., ACS Catal., 2018, 8(6), 5382

    Article  CAS  Google Scholar 

  9. Lv L., Yang Z., Chen K., Wang C., Xiong Y., Adv. Energy Mater., 2019, 9(17), 1803358

    Article  Google Scholar 

  10. He J., Liu Y., Huang Y., Li H., Zou Y., Dong C.-L., Wang S., Adv. Funct. Mater., 2021, 31(15), 2009245

    Article  CAS  Google Scholar 

  11. Zhang S. L., Guan B. Y., Lu X. F., Xi S., Du Y., Lou X. W., Adv. Mater., 2020, 32(31), 2002235

    Article  CAS  Google Scholar 

  12. Wang Y., Wang Z.-P., Wu H., Hou L., Liu Z.-Q., Chem. Commun., 2022, 58, 637

    Article  CAS  Google Scholar 

  13. Huang Z.-F., Song J., Du Y., Xi S., Dou S., Nsanzimana J. M. V., Wang C., Xu Z. J., Wang X., Nat. Energy, 2019, 4(4), 329

    Article  CAS  Google Scholar 

  14. Zhang J.-Y., Yan Y., Mei B., Qi R., He T., Wang Z., Fang W., Zaman S., Su Y., Ding S., Xia B. Y., Energy Environ. Sci., 2021, 14(1), 365

    Article  CAS  Google Scholar 

  15. Liu Z., Wang G., Zhu X., Wang Y., Zou Y., Zang S., Wang S., Angew. Chem. Int. Ed., 2020, 59(12), 4736

    Article  CAS  Google Scholar 

  16. Tang T., Zhang Q., Bai X., Wang Z., Guan J., Chem. Commun., 2021, 57(89), 11843

    Article  CAS  Google Scholar 

  17. Zhao Y., Guo Y., Lu X. F., Luan D., Gu X., Lou X. W., Adv. Mater., 2022, 2203442

  18. Pei Z., Lu X. F., Zhang H., Li Y., Luan D., Lou X.-W., Angew. Chem. Int. Ed., 2022, e202207537

  19. Zheng X., Yang J., Xu Z., Wang Q., Wu J., Zhang E., Dou S., Sun W., Wang D., Li Y., Angew. Chem. Int. Ed., 2022, 61(32), e202205946

    Article  CAS  Google Scholar 

  20. Hao Z., Liu D., Ge H., Zuo X., Feng X., Shao M., Yu H., Yuan G., Zhang Y., Chem. Res. Chinese Universities, 2022, 38(3), 823

    Article  CAS  Google Scholar 

  21. Lei C., Li W., Wang G., Zhuang L., Lu J., Xiao L., Chem. Res. Chinese Universities, 2021, 37(2), 293

    Article  CAS  Google Scholar 

  22. Zhang Z., Wang H., Li Y., Xie M., Li C., Lu H., Peng Y., Shi Z., Chem. Res. Chinese Universities, 2022, 38(3), 750

    Article  CAS  Google Scholar 

  23. Xu W., Lyu F., Bai Y., Gao A., Feng J., Cai Z., Yin Y., Nano Energy, 2018, 43, 110

    Article  CAS  Google Scholar 

  24. Song Y., Xu B., Liao T., Guo J., Wu Y., Sun Z., Small, 2021, 17(9), 2002240

    Article  CAS  Google Scholar 

  25. Chung D. Y., Lopes P. P., Martins P., He H., Kawaguchi T., Zapol P., You H., Tripkovic D., Strmcnik D., Zhu Y., Seifert S., Lee S., Stamenkovic V. R., Markovic N. M., Nat. Energy, 2020, 5(3), 222

    Article  Google Scholar 

  26. Cheng J., Wang D., Chin. J. Catal., 2022, 43(6), 1380

    Article  CAS  Google Scholar 

  27. Zhu K., Shi F., Zhu X., Yang W., Nano Energy, 2020, 73, 104761

    Article  CAS  Google Scholar 

  28. Zhuang L., Jia Y., He T., Du A., Yan X., Ge L., Zhu Z., Yao X., Nano Res., 2018, 11(6), 3509

    Article  CAS  Google Scholar 

  29. Lv J., Guan X., Huang Y., Cai L., Yu M., Li X., Yu Y., Chen D., Nanoscale, 2021, 13(37), 15755

    Article  CAS  PubMed  Google Scholar 

  30. Xue Z., Liu K., Liu Q., Li Y., Li M., Su C.-Y., Ogiwara N., Kobayashi H., Kitagawa H., Liu M., Li G., Nat. Commun., 2019, 10(1), 5048

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xiao Z., Huang Y.-C., Dong C.-L., Xie C., Liu Z., Du S., Chen W., Yan D., Tao L., Shu Z., Zhang G., Duan H., Wang Y., Zou Y., Chen R., Wang S., J. Am. Chem. Soc., 2020, 142(28), 12087

    Article  CAS  PubMed  Google Scholar 

  32. Yue K., Liu J., Zhu Y., Xia C., Wang P., Zhang J., Kong Y., Wang X., Yan Y., Xia B. Y., Energy Environ. Sci., 2021, 14(12), 6546

    Article  CAS  Google Scholar 

  33. Yu Z.-Y., Duan Y., Kong Y., Zhang X.-L., Feng X.-Y., Chen Y., Wang H., Yu X., Ma T., Zheng X., Zhu J., Gao M.-R., Yu S.-H., J. Am. Chem. Soc., 2022, 144(29), 13163

    Article  CAS  PubMed  Google Scholar 

  34. Yang H., Dong C., Wang H., Qi R., Gong L., Lu Y., He C., Chen S., You B., Liu H., Yao J., Jiang X., Guo X., Xia B. Y., Proc. Natl. Acad. Sci., 2022, 119(20), e2202812119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang B., Zheng X., Voznyy O., Comin R., Bajdich M., García-Melchor M., Han L., Xu J., Liu M., Zheng L., Arquer F. P. G. D., Dinh C. T., Fan F., Yuan M., Yassitepe E., Chen N., Regier T., Liu P., Li Y., Luna P. D., Janmohamed A., Xin H. L., Yang H., Vojvodic A., Sargent E. H., Science, 2016, 352(6283), 333

    Article  CAS  PubMed  Google Scholar 

  36. Huang J., Chen J., Yao T., He J., Jiang S., Sun Z., Liu Q., Cheng W., Hu F., Jiang Y., Pan Z., Wei S., Angew. Chem. Int. Ed., 2015, 54(30), 8722

    Article  CAS  Google Scholar 

  37. Song F., Hu X., Nat. Commun., 2014, 5(1), 4477

    Article  CAS  PubMed  Google Scholar 

  38. Zhao L., Dong B., Li S., Zhou L., Lai L., Wang Z., Zhao S., Han M., Gao K., Lu M., Xie X., Chen B., Liu Z., Wang X., Zhang H., Li H., Liu J., Zhang H., Huang X., Huang W., ACS Nano, 2017, 11(6), 5800

    Article  CAS  PubMed  Google Scholar 

  39. Zhu D., Liu J., Wang L., Du Y., Zheng Y., Davey K., Qiao S.-Z., Nanoscale, 2019, 11(8), 3599

    Article  CAS  PubMed  Google Scholar 

  40. Zhu D., Liu J., Zhao Y., Zheng Y., Qiao S.-Z., Small, 2019, 15(14), 1805511

    Article  Google Scholar 

  41. Suen N.-T., Hung S.-F., Quan Q., Zhang N., Xu Y.-J., Chen H. M., Chem. Soc. Rev., 2017, 46(2), 337

    Article  CAS  PubMed  Google Scholar 

  42. Xiao H., Shin H., Goddard W. A., Proc. Natl. Acad. Sci., 2018, 115(23), 5872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun H., Chen L., Lian Y., Yang W., Lin L., Chen Y., Xu J., Wang D., Yang X., Rümmerli M. H., Guo J., Zhong J., Deng Z., Jiao Y., Peng Y., Qiao S., Adv. Mater., 2020, 32(52), 2006784

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No.2020YFB1505703), the National Natural Science Foundation of China (Nos.22072101, 22075193), the Natural Science Foundation of Jiangsu Province, China(Nos.BK20211306, BK20220483), the Fund of the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau, China(No.SYG201934), the Six Talent Peaks Project in Jiangsu Province, China(No.TD-XCL-006), and the Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fenglei Lyu or Yang Peng.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supporting Information

40242_2022_2228_MOESM1_ESM.pdf

Electronic and Nano-structural Modulation of Co(OH)2 Nanosheets by Fe-Benzenedicarboxylate for Efficient Oxygen Evolution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Wu, H., Zhang, Y. et al. Electronic and Nano-structural Modulation of Co(OH)2 Nanosheets by Fe-Benzenedicarboxylate for Efficient Oxygen Evolution. Chem. Res. Chin. Univ. 39, 219–223 (2023). https://doi.org/10.1007/s40242-022-2228-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2228-1

Keywords

Navigation