Skip to main content
Log in

Surface-enhanced Raman Scattering Technology Based on WO3 Film for Detection of VEGF

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

With the advancement of nanomaterials for surface-enhanced Raman scattering(SERS) detection, a deeper understanding of the chemical mechanism(CM) and further applications has been achieved. Herein, we prepared a porous tungsten trioxide(WO3) film by the pulse electrodeposition method, and constructed a WO3 film SERS aptasensor. With methylene blue(MB) as the adsorption molecule, the developed WO3 film SERS aptasensor revealed remarkable Raman activity. Through experimental data and theoretical calculations, we found that the significant SERS enhancement[enhancement factor(EF)=1.5× 106] was due to the CM based on charge transfer and molecular resonance. Utilizing the Raman response of MB on the WO3 film and specific aptamers, we successfully developed the aptamer sensor by covalently attaching the MB modified aptamer to the WO3 film. The sensor realized the specific and sensitive determination of vascular endothelial growth factor(VEGF) with the detection limit down to 8.7 pg/mL. In addition, the developed aptasensor indicated the excellent selectivity among other interferences, such as metal ions, reactive oxygen species(ROS), and proteins. This WO3 film SERS aptasensor not only contributed to the study of the enhancement mechanism of semiconductor material, but also provided a powerful platform for the sensitive detection of VEGF, possessing a great potential in the real-time monitoring of biomarkers of glioblastoma in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deriu C., Conticello I., Mebel A. M., Mccord B., Anal. Chem., 2019, 91, 4780

    Article  CAS  Google Scholar 

  2. Zong C., Xu M. X., Xu L. J., Wei T., Ma X., Zheng X. S., Hu R., Ren B., Chem. Rev., 2018, 118, 4946

    Article  CAS  Google Scholar 

  3. Kneipp J., Kneipp H., Kneipp K., Chem. Soc. Rev., 2008, 37, 1052

    Article  CAS  Google Scholar 

  4. Sharma B., Frontiera R. R., Henry A. I., Ringe E., Van Duyne R. P., Mater. Today, 2012, 15, 16

    Article  CAS  Google Scholar 

  5. Lan L. L., Fan X. C., Gao Y. M., Li G. Q., Hao Q., Qiu T., J. Mater. Chem. C, 2020, 8, 14523

    Article  CAS  Google Scholar 

  6. Keshavarz M., Tan B., Venkatakrishnan K., ACS Appl. Mater. Interfaces, 2018, 10, 34886

    Article  CAS  Google Scholar 

  7. Wang X. Y., Li J., Shen Y. H., Xie A. J., Appl. Surf. Sci., 2019, 504, 144073

    Article  Google Scholar 

  8. Han X. X., Ji W., Zhao B., Ozaki Y., Nanoscale, 2017, 9, 4847

    Article  CAS  Google Scholar 

  9. Cong S., Yuan Y. Y., Chen Z. G., Hou J. Y., Yang M., Su Y. L., Zhang Y. Y., Li L., Li Q. W., Geng F. X., Zhao Z. G., Nat. Comm., 2015, 6, 7800

    Article  CAS  Google Scholar 

  10. Fan X. C., Li M. Z., Hao Q., Zhu M. S., Hou X. Y., Huang, H., Ma L. B., Schmidt O. G., Qiu T., Adv. Mater. Interfaces, 2019, 6, 19011338

    Article  Google Scholar 

  11. Hoeben A., Landuyt B., Highley M. S., Wildiers H., Van Oosterom A. T., de Bruijin E. A., Pharmacol. Rev., 2004, 56, 549

    Article  CAS  Google Scholar 

  12. Freeman R., Girsh J., Jou A. F. J., Ho J. A. A., Hug T., Dernedde J., Willner I., Anal. Chem., 2012, 84, 6192

    Article  CAS  Google Scholar 

  13. Rubenstein J. L., Kim J., Ozawa T., Zhang M., Westphal M., Deen D. F., Shuman M. A., Neoplasia, 2000, 2, 306

    Article  CAS  Google Scholar 

  14. Hicklin D. J., Ellis L. M., J. Clin. Oncol., 2005, 23, 1011

    Article  CAS  Google Scholar 

  15. Mita C., Abe K., Fukaya T., Ikebukuro K., Materials, 2014, 7, 1046

    Article  CAS  Google Scholar 

  16. Man J., Dong J. J., Wang Y. L., He L. L., Yu S. C., Yu F., Wang J., Tian Y M., Liu L., Han R. P., Guo H. C., Wu Y. J., Qu L. B., Int. J. Nanomed., 2020, 15, 9975

    Article  CAS  Google Scholar 

  17. Wang S., Lu H., Wang L., Zou J. P., Zhang R., Anal. Lett., 2020, 54, 1233

    Article  Google Scholar 

  18. Zhao S., Yang W. W., Lai R.Y., Biosens. Bioelectron., 2011, 26, 2442

    Article  CAS  Google Scholar 

  19. Fu X. M., Liu Z. J., Cai S. X., Zhao Y. P., Wu D. Z., Li C. Y., Chen J. H., Chin. Chem. Lett., 2016, 27, 920

    Article  CAS  Google Scholar 

  20. Cai G. F., Cui M. Q., Kumar V., Darmawan P., Wang J. X., Wang X., Lee-Sie Eh A., Qian K., Lee P. S., Chem. Sci., 2016, 7, 13

    Google Scholar 

  21. Xie Y. P., Liu G., Yin L. C., Chen H. M., J. Mater. Chem., 2012, 22, 6746

    Article  CAS  Google Scholar 

  22. Boulovan M., Lucazeauw G., J. Solid State Chem., 2002, 167, 425

    Article  Google Scholar 

  23. Acero Sánchez J. L., Baldrich E., Radi A. E., Dondapati S., Sánchez P. L., Kataki, I., O’Sullivan C. K., Electroanalysis, 2006, 18, 1957

    Article  Google Scholar 

  24. Radi A. E., Acero Sánchez J. L., Baldrich E., O’Sullivan C. K., J. Am. Chem. Soc., 2006, 128, 117

    Article  CAS  Google Scholar 

  25. Zuo X., Song S., Zhang J., Pan D., Wang L., Fan C., J. Am. Chem. Soc., 2007, 129, 1042

    Article  CAS  Google Scholar 

  26. Moskovits M., Rev. Mod. Phys., 1985, 57, 783

    Article  CAS  Google Scholar 

  27. Campion A., Ivanecky III J. E., Child C. M., Foster M., J. Am. Chem. Soc., 1995, 117, 11807

    Article  CAS  Google Scholar 

  28. Wang X. T., Guo L., Angew. Chem. Int. Ed., 2020, 59, 4231

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the the National Natural Science Foundation of China (Nos.21827814, 21974049) and the Shanghai Rising-star Program, China(No. 20QA1403300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Zheng or Yang Tian.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhou, Y., Zheng, T. et al. Surface-enhanced Raman Scattering Technology Based on WO3 Film for Detection of VEGF. Chem. Res. Chin. Univ. 37, 900–905 (2021). https://doi.org/10.1007/s40242-021-1192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1192-5

Keywords

Navigation