Skip to main content
Log in

Thermodynamics on sulfur migration in CaSO4 oxygen carrier reduction by CO

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

CaSO4 is an attractive oxygen carrier for chemical looping combustion(CLC) because of its high oxygen capacity and low price. The utilization of a CaSO4 oxygen carrier suffers the problems of sulfur release, and deactivation caused by sulfur loss. With respect to the fact that partial sulfur release could be recaptured and then recycled to CaSO4 by CaO sorbent, the mixture of CaSO4-CaO can be treated as an oxygen carrier. Thermodynamics of CaSO4 and CaSO4-CaO reduction by CO have been investigated in this study. The sulfur migrations, including the sulfur migration from CaSO4 to gas phase, mutual transformation of sulfur-derived gases and sulfur migration from gas phase to solid phase, were focused and elucidated. The results show that the releases of S2, S8, COS and CS2 from CaSO4 oxygen carrier are spontaneous, while SO2 can be released at high reaction temperatures above 884 °C. SO2 is the major emission source of sulfur at low CO/CaSO4 molar ratios, and COS is the major part of the byproducts as soon as the ratio exceeds 4 at 900 °C. Under CO atmosphere, all the sulfur-derived gases, SO2, S2, S8 and CS2, involved are thermodynamically favored to be converted into COS substance, and are spontaneously absorbed and solidified by CaO additive just into CaS species, which may be recycled to CaSO4 as oxygen carrier in the air reactor. But high reaction temperatures and high CO2 concentrations are adverse to sulfur capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richter H. J., Knoche K. F., Reversibility of Combustion Processes, Efficiency and Costing, American Chemical Society, Washington DC, 1983

    Google Scholar 

  2. Lyngfelt A., Leckner B., Mattisson T., Chem. Eng. Sci., 2001, 56(10), 3101

    Article  CAS  Google Scholar 

  3. Adanez J., Abad A., Garcia-Labiano F., Gayan P., Luis F., de Diego, Prog. Energy Combust. Sci., 2012, 38(2), 215

    Article  CAS  Google Scholar 

  4. Jin H., Okamoto T., Ishida M., Energy & Fuels, 1998, 12(6), 1272

    Article  CAS  Google Scholar 

  5. Yan C., Pan W. P., Energy & Fuels, 2006, 20(5), 1836

    Article  CAS  Google Scholar 

  6. Anthony E. J., Ind. Eng. Chem. Res., 2008, 47(6), 1747

    Article  CAS  Google Scholar 

  7. Shen L., Wu J., Xiao J., Song Q., Xiao R., Energy & Fuels, 2009, 23(5), 2498

    Article  CAS  Google Scholar 

  8. Kvamsdal H. M., Jordal K., Bolland O., Energy, 2007, 32(1), 10

    Article  CAS  Google Scholar 

  9. Qin W., Lin C. F., Cheng W. L., Xiao X. B., Chem. J. Chinese Uni-versities, 2015, 36(1), 116

    CAS  Google Scholar 

  10. Zeng L. P., Huang F., Zhu X., Zheng M., Li K. Z., Chem. J. Chinese Universities, 2017, 38(1), 115

    CAS  Google Scholar 

  11. Xiang W. G., Chen Y. Y., Energy & Fuels, 2007, 21(4), 2272

    Article  CAS  Google Scholar 

  12. Adánez J., de Diego L. F., García-Labiano F., Gayán P., Abad A., Energy & Fuels, 2004, 18(2), 371

    Article  CAS  Google Scholar 

  13. García-Labiano F., Adánez J., de Diego L. F., Gayán P., Energy & Fuels, 2006, 20(1), 26

    Article  CAS  Google Scholar 

  14. Cho P., Mattisson T., Lyngfelt A., Ind. Eng. Chem. Res., 2006, 45(3), 968

    Article  CAS  Google Scholar 

  15. Zhao H., Liu L., Wang B., Xu D., Jiang L., Zheng C., Energy & Fuels, 2008, 22(2), 898

    Article  CAS  Google Scholar 

  16. Källén M., Rydén M., Lyngfelt A., Mattisson T., Appl. Energ., 2015, 157, 330

    Article  CAS  Google Scholar 

  17. Zheng Y., Wang B. W., Song K., Zheng G. C., Eng. Thermophysics, 2016, 27(3), 531

    Google Scholar 

  18. Shen L., Zheng M., Xiao J., Xiao R., Combustion & Flame, 2008, 154, 489

    Article  CAS  Google Scholar 

  19. Song Q., Xiao R., Deng Z., Zhang H., Shen L., Xiao J., Zhang M., Energ. Convers. Manage., 2008, 49(11), 3178

    Article  CAS  Google Scholar 

  20. Song Q., Xiao R., Deng Z., Zheng W., Shen L., Xiao J., Energy & Fuels, 2008, 22(6), 3661

    Article  CAS  Google Scholar 

  21. Song Q., Xiao R., Deng Z., Shen L., Xiao J., Zhang M., Ind. Eng. Chem. Res., 2008, 47(21), 8148

    Article  CAS  Google Scholar 

  22. Tian H., Guo Q., Yue X., Liu Y., Fuel Process Technol., 2010, 91(11), 1640

    Article  CAS  Google Scholar 

  23. Liu S., Lee D., Liu M., Li L., Yan R., Energy & Fuels, 2010, 24(12), 6675

    Article  CAS  Google Scholar 

  24. Zheng M., Shen L., Xiao J., Int. J. Greenh. Gas Con., 2010, 4(5), 716

    Article  CAS  Google Scholar 

  25. Xiao R., Song Q., Combust. Flame, 2011, 158(12), 2524

    Article  CAS  Google Scholar 

  26. Ding N., Zheng Y., Luo C., Wu Q., Fu P., Zheng C., Chem. Eng. J., 2011, 171(3), 1018

    Article  CAS  Google Scholar 

  27. Zheng M., Shen L., Feng X., Energ. Conver. & Manage., 2014, 83, 270

    Article  CAS  Google Scholar 

  28. Wang J., Anthony E. J., Appl. Energ., 2008, 85(2/3), 73

    Article  CAS  Google Scholar 

  29. Cheng J., Zhou J., Liu J., Zhou Z., Huang Z., Cao X., Zhao X., Cen K., Prog. Energy & Combust. Sci., 2003, 29, 381

    Article  CAS  Google Scholar 

  30. Anthony E. J., Granatstein D. L., Prog. Energy Combust. Sci., 2001, 27(2), 215

    Article  CAS  Google Scholar 

  31. Teaching and Research Group of General Chemistry, General Che-mistry 4th Ed., Higher Education Press, Beijing, 1995, 28

  32. Mattisson T., Lyngfelt A., Energy & Fuels, 1998, 12(5), 905

    Article  CAS  Google Scholar 

  33. Okumura S., Mihara N., Kamiya K., Ozawa S., Maurice S., Onyango, Kojima Y., Matsuda H., Ind. Eng. Chem. Res., 2003, 42(24), 6046

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zheng.

Additional information

Supported by the National Natural Science Foundation of China(Nos.51306084, 51374004), the Scientific and Technological Leading Talent Projects in Yunnan Province, China(No.2015HA019), and the Natural Science Foundation of Kunming University of Science and Technology, China(No.KKZ3201352030).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, S., Zheng, M., Pu, S. et al. Thermodynamics on sulfur migration in CaSO4 oxygen carrier reduction by CO. Chem. Res. Chin. Univ. 33, 979–985 (2017). https://doi.org/10.1007/s40242-017-6457-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6457-7

Keywords

Navigation