Skip to main content
Log in

Three-dimensional flower-like rutile TiO2 microsphere composed of nanorods: a potential material as light scattering layer for DSSCs

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The low spectrum utilization and the recombination of photo-generated electrons are the main challenges for improving the performance of dye sensitized solar cells(DSSCs). In this article, a three-dimensional flower-like rutile titanium dioxide(TDF-TiO2) was successfully synthesized via a simple sol-thermal process. X-Ray diffraction patterns(XRD) and scan electron microscopy(SEM) images exhibit that the TDF-TiO2 are the rutile TiO2 microsphere composed of lots of regular cuboid nanorods. Applying this TDF-TiO2 as light scattering layer on the photoanode of DSSCs, the devices present an excellent photovoltage performance, yielding a power conversion efficiency(PCE) of 7.69%, which can be mainly attributed to the enhanced light utilization and the reduced recombination of pho-to-generated electrons upon a combined analysis of electrochemical impedance spectroscopy(EIS), open-circuit vol-tage decay(OCVD), and intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spec-troscopy(IMPS/IMVS), etc. As a conclusion, TDF-TiO2 is a potential material as light scattering layer and optical transition medium to improve the performance of DSSCs, and this work further demonstrated that regulating the morphology and particle size of TiO2 is an efficient approach for enhancing the performance of DSSCs by optimizing the utilization of light and the transporting behaviors of photo-generated electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Subramaniam M. R., Kumaresan D., Chem. Phys. Chem., 2015, 16(12), 2543

    CAS  Google Scholar 

  2. Liu G., Yang H. G., Pan J., Yang Y. Q., Lu G. Q., Cheng H., Chem. Rev., 2014, 114(19), 9559

    Article  CAS  Google Scholar 

  3. Wooh S., Yoon H., Jung J., Lee Y., Koh J., Lee B., Kang Y., Char K., Adv. Mater., 2013, 25(22), 3111

    Article  CAS  Google Scholar 

  4. Li K., Xu J., Shi W., Wang Y., Peng T., J. Mater. Chem. A, 2014, 2(6), 1886

    Article  CAS  Google Scholar 

  5. Wang B., Wan J., Liu Q., Zhang J., Wang H., RSC Adv., 2015, 5(101), 82968

    Article  CAS  Google Scholar 

  6. Park K., Dhayal M., Electrochemi. Commun., 2014; 49, 47

    Article  CAS  Google Scholar 

  7. Wang G., Zhu X., Yu J., J. Power Sources, 2015; 278, 344

    Article  CAS  Google Scholar 

  8. Qadir M. B., Sun K. C., Sahito I. A., Arbab A. A., Choi B. J., Yi S. C., Jeong S. H., Sol. Energy Mater. Sol. Cells, 2015; 140, 141

    Article  CAS  Google Scholar 

  9. Yan K., Qiu Y., Chen W., Zhang M., Yang S., Energy Environ. Sci., 2011, 4(6), 2168

    Article  CAS  Google Scholar 

  10. Wen Q., Dong L., Sun X., Zhuang J., Chem. Res. Chinese Universi-ties, 2016, 32(3), 437

    Article  CAS  Google Scholar 

  11. Wang W., Zhang H., Wang R., Feng M., Chen Y., Nanoscale, 2014, 6(4), 2390

    Article  CAS  Google Scholar 

  12. Guo K., Li M., Fang X., Liu X., Zhu Y., Hu Z., Zhao X., J. Mater. Chem. A, 2013, 1(24), 7229

    Article  CAS  Google Scholar 

  13. Sang L., Zhao Y., Burda C., Chem. Rev., 2014, 114(19), 9283

    Article  CAS  Google Scholar 

  14. Sigmund W., Bak T., Alim M. A., Idris M., Ionescu M., Prince K., Sahdan M. Z., Sopian K., Teridie M., Sigmund W., Chem. Soc. Rev., 2015, 44(23), 8424

    Article  Google Scholar 

  15. Fu Y., Peng M., Lv Z., Cai X., Hou S., Wu H., Yu X., Kafafy H., Zou D., Nano Energy, 2013, 2(4), 537

    Article  CAS  Google Scholar 

  16. Wooh S., Kim T., Song D., Lee Y., Lee T., Bergmann V. W., Weber S., Bisquert J., Kang Y., Char K., ACS Appl. Mater. Interfaces, 2015, 7(46), 25741

    Article  CAS  Google Scholar 

  17. Chen B., Sha J., Li W., Liu E., Shi C., He C., Li J., Zhao N., ACS Appl. Mater. Interfaces, 2016, 8(4), 2495

    Article  CAS  Google Scholar 

  18. Yao N., Huang J., Fu K., Deng X., Ding M., Xu X., RSC Adv., 2016, 6(21), 17546

    Article  CAS  Google Scholar 

  19. Wang X., Jiang Y., Zhu H., Zhang J., Chem. Res. Chinese Universi-ties, 2011, 27(3), 486

    CAS  Google Scholar 

  20. Wu W., Xu Y., Rao H., Su C., Kuang D., J Phys. Chem. C, 2014, 118(30), 16426

    Article  CAS  Google Scholar 

  21. Ghadirzadeh A., Passoni L., Grancini G., Terraneo G., Bassi A., Pe-trozza A., Fonzo F., ACS Appl. Mater. Interfaces, 2015, 7(14), 7451

    Article  CAS  Google Scholar 

  22. Qu J., Li G. R., Gao X. P., Energy Environ. Sci., 2010, 3(12), 2003

    Article  CAS  Google Scholar 

  23. Ong W. J., Tan L. L., Chai S. P., Yong S., Mohamed A. R., Nanoscale, 2014, 6(4), 1946

    Article  CAS  Google Scholar 

  24. Sarkar D., Ghosh C. K., Chattopadhyay K. K., Cryst. Eng. Comm, 2012, 14(8), 2683

    Article  CAS  Google Scholar 

  25. Yan J., Liu P., Ma C., Lin Z., Yang G., Nanoscale, 2016, 8(16), 8826

    Article  CAS  Google Scholar 

  26. Ding Y., Mo L., Tao L., Ma Y., Hu L., Huang Y., Fang X., Yao J., Xi X., Dai S., J. Power Sources, 2014; 272, 1046

    Article  CAS  Google Scholar 

  27. Peng H., Li X., Xu L., Wu P., Chin. Chem. Lett., 2014, 24(7), 559

    Article  Google Scholar 

  28. Tauc J., Grigorovic R., Vancu A., Phys. Stat. Sol., 1966, 15(2), 627

    Article  CAS  Google Scholar 

  29. Pan J. H., Wang X. Z., Huang Q., Shen C., Koh Z. Y., Wang Q., En-gel A., Bahnemann D. W., Adv. Funct. Mater., 2014, 24(1), 95

    Article  CAS  Google Scholar 

  30. Gu J., Khan J., Chai Z., Yuan Y., Yu X., Liu P., Wu M., Ma W., J. Power Sources, 2016; 303, 57

    Article  CAS  Google Scholar 

  31. Liu W., Liang Z., Kou D., Hu L., Dai S., Chem. J. Chinese Universi-ties, 2012, 33(12), 2697

    CAS  Google Scholar 

  32. Bisquert J., Fabregat-Santiago F., Mora-Seró I., Garcia-Belmonte G., Giménez S., J. Phys. Chem. C, 2009, 113(40), 17278

    Article  CAS  Google Scholar 

  33. Wei L., Na Y., Yang Y., Fan R., Wang P., Li L., Phys. Chem. Chem. Phys., 2015, 17(2), 1273

    Article  CAS  Google Scholar 

  34. Wang H., Bai Y., Wu Q., Zhou W., Zhang H., Li J., Guo L., Phys. Chem. Chem. Phys., 2011, 13(15), 7008

    Article  CAS  Google Scholar 

  35. Zaban A., Greenshtein M., Bisquert J., Chem. Phys. Chem., 2003, 4(8), 859

    CAS  Google Scholar 

  36. Miao X., Pan K., Liao Y., Zhou W., Pan Q., Tian G., Wang G., J. Mater. Chem. A, 2013, 1(34), 98532

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulin Yang or Ruiqing Fan.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21571042, 21371040) and the National Key Basic Research Program of China(No.2013CB632900).

Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s40242-017-6363-z.

Electronic supplementary material

40242_2017_6363_MOESM1_ESM.pdf

Three-dimensional flower-like rutile TiO2 composed of nanorods: a promising candidate as light scattering layer for DSSCs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Yang, Y., Dong, G. et al. Three-dimensional flower-like rutile TiO2 microsphere composed of nanorods: a potential material as light scattering layer for DSSCs. Chem. Res. Chin. Univ. 33, 298–304 (2017). https://doi.org/10.1007/s40242-017-6363-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6363-z

Keywords

Navigation