Skip to main content
Log in

Prediction of stability for polychlorinated biphenyls in transformer insulation oil through three-dimensional quantitative structure-activity relationship pharmacophore model and full factor experimental design

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Based on the obtained data of half-lives(t 1/2) for 31 polychlorinated biphenyl congeners(PCBs), 3D quantitative structure-activity relationship(QSAR) pharmacophore was used to establish a 3D QSAR model to predict the t 1/2 values of the remaining 178 PCBs, using the structural parameters as independent variables and lgt 1/2 values as the dependent variable. Among this process, the whole data set(31 compounds) was divided into a training set(24 compounds) for model generation and a test set(7 compounds) for model validation. Then, the full factor experimental design was used to research the potential second-order interactional effect between different substituent positions, obtaining the final regulation scheme for PCB. At last, a 3D QSAR pharmacophore model was established to validate the reasonable regulation targeting typical PCB with respect to half-lives and thermostability. As a result, the cross-validation correlation coefficient(q 2) obtained by the 3D QSAR model was 0.845(>0.5) and the coefficient of determination(r 2) obtained was 0.936(>0.9), indicating that the models were robust and predictive. CoMSIA analyses upon steric, electrostatic and hydrophobic fields were 0.7%, 85.9%, and 13.4%, respectively. The electrostatic field was determined to be a primary factor governing the t 1/2. From CoMSIA contour maps, t 1/2 increased when substituents possessed electropositive groups at the 2′-, 3-, 3′-, 5- and 5′- positions and electronegative groups at the 3-, 3′-, 5-, 6- and 6′- positions, which could increase the PCB stability in transformer insulation oil. Modification of two typical PCB congeners(PCB-77 and PCB-81) showed that the lgt 1/2for three selected modified compounds increased by 13%(average ratio) compared with that of each congener and the thermostability of them were higher, validating the reasonability of the regulatory scheme obtained from the 3D QSAR model. These results are expected to be beneficial in predicting t 1/2 values of PCB homologues and derivatives and in providing a theoretical foundation for further elucidation of the stability of PCBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanabe S., Environ. Pollut., 1988, 50, 5

    Article  CAS  Google Scholar 

  2. Giesy J. P., Kannan K., Crit. Rev. Toxicol., 1998, 28, 511

    Article  CAS  Google Scholar 

  3. Tasdemir Y., Salihoglu G., Salihoglu N. K., Birgül A., Environ. Pollut., 2012, 169, 90

    Article  CAS  Google Scholar 

  4. Eqani S., Malik R., Katsoyiannis A., Zhang G., Charkraborty P., Mohammad A., Jones K. C., J. Environ. Monit., 2012, 14, 1645

    Article  CAS  Google Scholar 

  5. Breivik K., Sweetman A., Pacyna J. M., Jones K. C., Sci. Total Environment, 2002, 290, 181

    Article  CAS  Google Scholar 

  6. Wu S., Xia X., Yang L., Liu H., Chemosphere, 2011, 82, 732

    Article  CAS  Google Scholar 

  7. Liu J., Cui Z. J., Liu L., Tan F. X., Environmental Science, 2008, 29, 2899

    CAS  Google Scholar 

  8. Bjorn G. H., Ana B. P., Mohammed R., Bo R. L., Chemsphere, 1999, 39, 2209

    Article  Google Scholar 

  9. Halim S. A., Hap Z., Chem-Biol. Interact., 2015, 238, 9

    Article  CAS  Google Scholar 

  10. Haq Z. U., Uddin R., Yuan H., Petukhov A. A., Choudhary M. I., Madura J. D., J. Chem. Inf. Model., 2007, 48, 1092

    Google Scholar 

  11. Svensgaard D. J., Hertzberg R. C.; Eds.: Yang R. S. H., Toxicology of Chemical Mixtures, Academic Press, San Diego, 1994, 599

  12. Hou T., Xu X., Curr. Pharm. Des., 2004, 10, 1011

    Article  CAS  Google Scholar 

  13. Yu C., Chen C., J. Taiwan Inst. Chem. E., 2009, 40, 155

    Article  Google Scholar 

  14. Valasani K. R., Vangavaragu J. R., Day V. W., Yan S. S., J. Chem. Inf. Model., 2014, 54, 902

    Article  CAS  Google Scholar 

  15. Aleksandra J., Silvia D. F., Giuseppe V., Franco C., Francesco F., Water Res., 2015, 83, 329

    Article  Google Scholar 

  16. Borges G. B., Rohwedder J. J., Bortoni E. C., AASRI Conference on Power and Energy Systems, 2012, 2, 56

    Google Scholar 

  17. Li X. L., Ye L., Wang X. X., Wang X. Z., Liu H. L., Qian X. P., Zhu Y. L., Yu H. X., Sci. Total Environ., 2012, 441, 230

    Article  CAS  Google Scholar 

  18. Mahmood A., Syed J. H., Malik R. N., Zheng Q., Cheng Z. N., Li J., Zhang G., Sci. Total Environ., 2014, 481, 596

    Article  CAS  Google Scholar 

  19. Ali U., Syed J. H., Mahmood A., Li J., Zhang G., Jones K. C., Malik R. N., Chemosphere, 2015, 134, 172

    Article  CAS  Google Scholar 

  20. Patil G. S., Chemosphere, 1991, 22, 723

    Article  CAS  Google Scholar 

  21. Liu J., Cui Z. J., Liu L., Tan F. X., Environmental Science, 2008, 29, 2899

    CAS  Google Scholar 

  22. Golbraikh A., Tropsha A., J. Comput. Aided. Mol. Des., 2002, 16, 357

    Article  CAS  Google Scholar 

  23. Li X. L., Ye L., Wang X. X., Wang X. Z., Liu H. L., Qian X. P., Zhu Y. L., Yu H. X., Sci. Total Environ., 2012, 441, 230

    Article  CAS  Google Scholar 

  24. Li X. L., Ye L., Wang X. X., Wang X. Z., Liu H. L., Zhu Y. L., Yu H. X., Toxicol. Appl. Pharm., 2012, 265, 300

    Article  CAS  Google Scholar 

  25. Clark M., Cramer R. D., Vanopdenbosch N., J. Comput. Chem., 1989, 10, 982

    Article  CAS  Google Scholar 

  26. Gasteiger J., Marsili M., Tetrahedron, 1980, 36, 3219

    Article  CAS  Google Scholar 

  27. Hao M., Li Y., Wang Y., Yan Y., Zhang S., J. Chem. Inf. Model., 2011, 51, 2560

    Article  CAS  Google Scholar 

  28. Li M., Wei D. B., Zhao H. M., Du Y. G., Chemosphere, 2014, 95, 220

    Article  Google Scholar 

  29. Golbraikh A., Tropsha A., J. Mol. Graph. Model., 2002, 20, 269

    Article  CAS  Google Scholar 

  30. Jiang L., Li Y., J. Chemometr., 2015, 29, 606

    Article  CAS  Google Scholar 

  31. Diao J., Li Y., Shi S., Sun Y., Sun Y., B. Environ. Contam. Tox., 2010, 85, 109

    Article  CAS  Google Scholar 

  32. Leach A. R., Molecular Modelling: Principles and Applications, Person Education Limited, Harlow, 2001

    Google Scholar 

  33. Li X. L., Li Y., Shi W., Liu H. L., Liu C. S., Qian X. P., Zhu Y. L., Yu H. G., Ecotox. Environ. Safe., 2013, 92, 258

    Article  CAS  Google Scholar 

  34. Lundgaard L., Hansen W., Linhjell D., Painter T., IEEE T. Power Delive., 2004, 19, 230

    Article  CAS  Google Scholar 

  35. Degeratu S., Rotaru R., Rizescu S., Danoiu S., Bizdoaca N. G., Alboteanu L. I., Manolea H. O., J. Therm. Anal. Calorim., 2015, 119, 1679

    Article  CAS  Google Scholar 

  36. Junichi W., Genyo U., Shigemitsu O., IEEE T. Dielect. El. In., 2014, 21, 873

    Article  Google Scholar 

  37. Ueta G., Tsuboi T., Okabe S., Amimoto T., IEEE T. Dielect. El. In., 2012, 19, 2216

    Article  CAS  Google Scholar 

  38. Wada J., Ueta G., Okabe S., Amimoto T., IEEE T. Dielect. El. In., 2013, 20, 1388

    Article  CAS  Google Scholar 

  39. Shigemitsu O., Genyo U., Toshihiro T., IEEE T. Dielect. El. In., 2013, 20, 346

    Article  Google Scholar 

  40. Bao Y. P., Huang Q. Y., Wang W. L., Xu J. J., Jiang F., Feng C. H., Front. Environ. Sci. En., 2011, 5, 505

    Article  CAS  Google Scholar 

  41. Arooj M., Thangapandian S., John S., Hwang S., Park J. K., Lee K. W., Int. J. Mol. Sci., 2011, 12, 9236

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Li.

Additional information

Supported by the Fundamental Research Funds for the Central Universities of China in 2013(No.JB2013146) and the Key Projects in the National Science & Technology Pillar Program of China in the 11th Five-year Plan Period(No.2008BAC43B01).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Chen, Y., Qiu, Y. et al. Prediction of stability for polychlorinated biphenyls in transformer insulation oil through three-dimensional quantitative structure-activity relationship pharmacophore model and full factor experimental design. Chem. Res. Chin. Univ. 32, 348–356 (2016). https://doi.org/10.1007/s40242-016-5461-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-5461-7

Keywords

Navigation