Skip to main content
Log in

Theoretical investigation on binding process of allophanate to allophanate hydrolase

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Several molecular simulation methods were integrated to investigate the detailed binding process of allophanate to allophanate hydrolase and predict their stable complex structure. The optimal enzyme-substrate complex conformation demonstrates that along with Arg307 and Tyr299, Gly124 is also one of the key anchor residues in the stable complex. The energetic calculation suggests the existence of an intermediate state in the enzyme-substrate binding process. The further atomic-level investigation illuminates that Tyr299, Arg307 and Ser172 can stabilize the substrate in the intermediate state. By this token, the residues Arg307 and Tyr299 function in both binding process and getting stable state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chebrou H., Bigey F., Arnaud A., Galzy P., BBA-Protein Struct. M., 1996, 1298, 285

    Article  CAS  Google Scholar 

  2. Shin S., Yun Y. S., Koo H. M., Kim Y. S., Choi K. Y., Oh B. H., J. Biol. Chem., 2003, 278, 24937

    Article  CAS  Google Scholar 

  3. Shin S., Lee T. H., Ha N. C., Koo H. M., Kim S. Y., Lee H. S., Kim Y. S., Oh B. H., EMBO J., 2002, 21, 2509

    Article  CAS  Google Scholar 

  4. Kim Y. S., Kang S. W., J. Biol. Chem., 1994, 269, 8014

    CAS  Google Scholar 

  5. Deutsch D. G., Ueda N., Yamamoto S., Prostag. Leukotr. Ess., 2002, 66, 201

    Article  CAS  Google Scholar 

  6. Wu J., Bu W., Sheppard K., Kitabatake M., Kwon S. T., Söll D., Smith J. L., J. Mol. Biol., 2009, 391, 703

    Article  CAS  Google Scholar 

  7. Ohtaki A., Murata K., Sato Y., Noguchi K., Miyatake H., Dohmae N., Yamada K., Yohda M., Odaka M., BBA-Proteins Proteom., 2010, 1804, 184

    Article  CAS  Google Scholar 

  8. Yasuhira K., Shibata N., Mongami G., Uedo Y., Atsumi Y., Kawashima Y., Hibino A., Tanaka Y., Lee Y. H., Kato D. I., Takeo M., Higuchi Y., Negoro S., J. Biol. Chem., 2010, 285, 1239

    Article  CAS  Google Scholar 

  9. Fan C., Chou C. Y., Tong L., Xiang S., J. Biol. Chem., 2012, 287, 9389

    Article  CAS  Google Scholar 

  10. Cheng G., Shapir N., Sadowsky M. J., Wackett L. P., Appl. Environ. Microb., 2005, 71, 4437

    Article  CAS  Google Scholar 

  11. Kanamori T., Kanou N., Kusakabe S., Atomi H., Imanaka T., FEMS Microbiol. Lett., 2005, 245, 61

    Article  CAS  Google Scholar 

  12. Shapir N., Sadowsky M. J., Wackett L. P., J. Bacteriol., 2005, 187, 3731

    Article  CAS  Google Scholar 

  13. Strope P. K., Nickerson K. W., Harris S. D., Moriyama E. N., BMC Evolutionary Biology, 2011, 11, 80

    Article  CAS  Google Scholar 

  14. Kanamori T., Kanou N., Atomi H., Imanaka T., J. Bacteriol., 2004, 186, 2532

    Article  CAS  Google Scholar 

  15. Balotra S., Newman J., French N. G., Briggs L. J., Peat T. S., Scott C., Acta Crystallogr F, 2014, 70, 310

    Article  CAS  Google Scholar 

  16. Lin Y., St. Maurice M., Biochemistry, 2013, 52, 690

    Article  CAS  Google Scholar 

  17. Fan C., Li Z., Yin H., Xiang S., J. Biol. Chem., 2013, 288, 21422

    Article  CAS  Google Scholar 

  18. Balotra S., Newman J., Cowieson N. P., French N. G., Campbell P. M., Briggs L. J., Warden A. C., Easton C. J., Peat T. S., Scott C., Appl. Environ. Microb., 2015, 81, 470

    Article  Google Scholar 

  19. Dong L., Yi Z., Wu Z., Wang H., Zhang A., Chem. J. Chinese Universities, 2015, 36(3), 516

    CAS  Google Scholar 

  20. Zhang J. L., Zheng Q. C., Li Z. Q., Zhang H. X., PLoS ONE, 2013, 8, e53811

    Article  CAS  Google Scholar 

  21. Zhang J. L., Zheng Q. C., Chu W. T., Zhang H. X., Curr. Comput. Aid. Drug., 2013, 9, 532

    Article  CAS  Google Scholar 

  22. Zhang J., Zheng Q., Zhang H., J. Phys. Chem. B, 2010, 114, 7383

    Article  CAS  Google Scholar 

  23. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J., Brothers E. N., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Gaussian Inc., Wallingford CT, 2009

    Google Scholar 

  24. Wu G., Robertson D. H., Brooks C. L. I., Vieth M., J. Comput. Chem., 2003, 24, 1549

    Article  CAS  Google Scholar 

  25. Discovery Studio, Release 2.5, Accelrys Software Inc., San Diego, 2013

  26. Humphrey W., Dalke A., Schulten K., J. Mol. Graph., 1996, 14, 33

    Article  CAS  Google Scholar 

  27. Phillips J. C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R. D., Kalé L., Schulten K., J. Comput. Chem., 2005, 26, 1781

    Article  CAS  Google Scholar 

  28. MacKerell A. D., Feig M., Brooks C. L., J. Am. Chem. Soc., 2003, 126, 698

    Article  Google Scholar 

  29. Vanommeslaeghe K., Raman E. P., MacKerell A. D., J. Chem. Inf. Model., 2012, 52, 3155

    Article  CAS  Google Scholar 

  30. Vanommeslaeghe K., MacKerell A. D., J. Chem. Inf. Model., 2012, 52, 3144

    Article  CAS  Google Scholar 

  31. Becke A. D., J. Chem. Phys., 1993, 98, 5648

    Article  CAS  Google Scholar 

  32. Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L., J. Chem. Phys., 1983, 79, 926

    Article  CAS  Google Scholar 

  33. Darden T., York D., Pedersen L., J. Chem. Phys., 1993, 98, 10089

    Article  CAS  Google Scholar 

  34. Feller S. E., Zhang Y., Pastor R. W., Brooks B. R., J. Chem. Phys., 1995, 103, 4613

    Article  CAS  Google Scholar 

  35. Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P., Biedermannova L., Sochor J., Damborsky J., PLoS Comput. Biol., 2012, 8, e1002708

    Article  CAS  Google Scholar 

  36. Zhang J. L., Zheng Q. C., Zhang H. X., Chem. Phys. Lett., 2010, 484, 338

    Article  CAS  Google Scholar 

  37. Hénin J., Chipot C., J. Chem. Phys., 2004, 121, 2904

    Article  Google Scholar 

  38. Rodriguez-Gomez D., Darve E., Pohorille A., J. Chem. Phys., 2004, 1 20, 3563

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jilong Zhang or Jianzhang Ma.

Additional information

Supported by the International Postdoctoral Exchange Fellowship Program(No.20130037), the China Postdoctoral Science Foundation(Nos.2013T60320, 2013M541289), and the National Natural Science Foundation of China(Nos.21203072, 21303068).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, J., Zheng, Q. et al. Theoretical investigation on binding process of allophanate to allophanate hydrolase. Chem. Res. Chin. Univ. 31, 1023–1028 (2015). https://doi.org/10.1007/s40242-015-5108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5108-0

Keywords

Navigation