Skip to main content
Log in

Electrospinning synthesis and photoluminescence properties of SnO2:xEu3+ nanofibers

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

SnO2:xEu3+(x=0, 1%, 3%, 5%, molar fraction) fibers were synthesized by electrospinning technology. The size of the as-prepared fibers is relatively uniform and the average diameter is about 200 nm with a large draw ratio. The as-prepared Eu3+ doped SnO2 nanofibers have a rutile structure and consist of crystallite grains with an average size of about 10 nm. A slight red shift of the A 1g and B 2g vibration modes and an additional peak at 288 nm were observed in the Raman spectra of the nanofibers. The energies of bandgaps of the SnO2 nanofiber with Eu doping of 1% and 3% are 2.64 eV, and the energy of bandgap is 2.94 eV with Eu doping of 5%(molar fraction). There is only orange emission(5 D 07 F 1 magnetic dipole transition) for Eu doped SnO2 nanofibers, and no red emission could be observed. The orange emission upon indirect excitation splits into three peaks and the peak intensity at the excitation wavelength of 275 nm is higher than that at the excitation wavelength of 488 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park J. A., Moon J., Lee S. J., Lim S. C., Zyung T., Curr. Appl. Phys., 2009, 9, S210

    Article  Google Scholar 

  2. Doh S. J., Kim C., Lee S. G., Lee S. J., Kim H., J. Hazard. Mater., 2008, 154, 118

    Article  CAS  Google Scholar 

  3. Lim S. K., Hwang S. H., Chang D., Kim S., Sens. Actuators B Chem., 2010, 149, 28

    Article  CAS  Google Scholar 

  4. Chaudhari S., Srinivasan M., J. Mater. Chem., 2012, 22, 23049

    Article  CAS  Google Scholar 

  5. Wang W., Huang H., Li Z., J. Am. Ceram Soc., 2008, 91(11), 3817

    Article  CAS  Google Scholar 

  6. Wang W., Yuan Q., Chi Y., Shao C. L., Li N., Li X. T., Chem. Res. Chinese Universities, 2012, 28(4), 727

    Article  Google Scholar 

  7. Shao C. L., Guan H. Y., Liu Y. C., Li X. L., Yang X. H., J. Solid State Chem., 2004, 177(7), 2628

    Article  CAS  Google Scholar 

  8. Chuai H. Y., Zhou D. F., Zhu X. F., Yang G. C., Li Z. H., Chem. J. Chinese Universities, 2014, 35(5), 941

    Google Scholar 

  9. Zhang Y., Kolmakov A., Chretien S., Metiu H., Moskovits M., Nano Lett., 2004, 4, 403

    Article  CAS  Google Scholar 

  10. Ferrere S., Zaban A., Gsegg B. A., J. Phys. Chem. B, 1997, 101, 4490

    Article  CAS  Google Scholar 

  11. Wang C., Appleby A. J., Little F. E., Solid State Ionics, 2002, 13, 147

    Google Scholar 

  12. Shen G., Chen P. C., Ryu K. M., Zhou C. W., J. Mater. Chem., 2009, 19, 828

    Article  CAS  Google Scholar 

  13. Park M. S., Wang G. X., Kang Y. M., Wexler D., Dou S. X., Liu H. K., Angew. Chem. Int. Ed., 2007, 46, 750

    Article  CAS  Google Scholar 

  14. Zhang G. D., Liu N., Ren Z. Y., Yang B., J. Nanomater., 2011, 2011, 526094–1

    Google Scholar 

  15. Ye J. F., Zhang H. J., Yang R., Li X. G., Qi L., Small, 2010, 6, 296

    Article  CAS  Google Scholar 

  16. Xu C. H., Sun J., Gao L., J. Mater. Chem., 2012, 22, 975

    Article  CAS  Google Scholar 

  17. Kim I. D., Jeon E. K., Choi S. H., Choi D. K., Tuller H. L., J. Electroceram., 2010, 25, 159

    Article  CAS  Google Scholar 

  18. Cao J., Zhang T., Li F., Yang H., Liu S., New J. Chem., 2013, 37, 2031

    Article  CAS  Google Scholar 

  19. Lee B. S., Kim W. S., Kim D. H., Kim H. C., Hong S. H., Yu W. R., Smart Mater. Struct., 2011, 20, 105019–1

    Article  Google Scholar 

  20. Jiang C., Zhang G., Wu Y., Li L., Shi K., CrystEngComm, 2012, 14, 2739

    Article  CAS  Google Scholar 

  21. Kim W. S., Lee B. S., Kim D. H., Kim H. C., Yu W. R., Hong S. H., Nanotechnology, 2010, 21, 245605–1

    Article  Google Scholar 

  22. Huang H. M., Zhang S. Q., Wang W., Wang C., Yu J., Chem. J. Chinese Universities, 2012, 33(7), 1619

    CAS  Google Scholar 

  23. Luo S. H., Fan J. Y., Liu W. L., Zhang M., Song Z. T., Lin C. L., Wu X. L., Chu P., Nanotechnology, 2006, 17, 1695

    Article  CAS  Google Scholar 

  24. Shen H. Z., Feng S., Wang Y., Gu Y. P., Zhou J., Yang H., Feng G. L., Li L., Wang W. Q., Liu X. Y., Xu D. P., J. Alloy Compd., 2013, 550, 531

    Article  CAS  Google Scholar 

  25. Shen H. Z., Liu R. R., Zhou J., Yang M., Gu Y. P., Yang H., Wang W. Q., Xu D. P., Phys. Status Solidi A, 2013, 210(9), 1839

    CAS  Google Scholar 

  26. Fu X. Y., Zhang H. W., Niu S. Y., Xin Q., J. Solid State Chem., 2005, 178, 603

    Article  CAS  Google Scholar 

  27. Zeferino R. S., Pal U., Melendrez R., Duran-Munoz H. A., Barboza Flores M., J. Appl. Phys., 2013, 113, 064306–1

    Article  Google Scholar 

  28. Chang S. S., Jo M. S., Ceram. Int., 2007, 33, 511

    Article  CAS  Google Scholar 

  29. Chen J. T., Wang J., Zhang F., Yan D., Zhang G. G., Zhuo R. F., Yan P. X., J. Phys. D: Appl. Phys., 2008, 41, 105306–1

    Article  Google Scholar 

  30. Sarmah S., Kumar A., Indian J. Phys., 2010, 84(9), 1211

    Article  CAS  Google Scholar 

  31. Nogami M., Enomoto T., Hayakawa T., J. Lumin., 2002, 97, 147

    Article  CAS  Google Scholar 

  32. Moon T., Hwang S. T., Jung D. R., Son D., Kim C., Kim J., Kang M., Park B., J. Phys. Chem. C, 2007, 111, 4164

    Article  CAS  Google Scholar 

  33. Bazargan S., Leung K. T., J. Chem. Phys., 2012, 137, 184704

    Article  Google Scholar 

  34. Sundaram K. B., Bhagavat G. K., J. Phys. D: Appl. Phys., 1981, 14, 921

    Article  CAS  Google Scholar 

  35. Morais E. A., Scalvi L. V. A., Tabata A., Oliveira J. B. B. D., Ribeiro S. J. L., J. Mater. Sci., 2008, 43, 345

    Article  CAS  Google Scholar 

  36. Wang H. K., Wang Y., Kershaw S. V., Hung T. F., Xu J., Rogach A. L., Part. Part. Syst. Charact., 2013, 30, 332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dapeng Xu.

Additional information

Supported by the National Foundation for Fostering Talents of Basic Science, China(No.J1103202) and the National Natural Science Foundation of China(No.11304113).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Shen, H., Li, L. et al. Electrospinning synthesis and photoluminescence properties of SnO2:xEu3+ nanofibers. Chem. Res. Chin. Univ. 30, 879–884 (2014). https://doi.org/10.1007/s40242-014-4252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-4252-2

Keywords

Navigation