Skip to main content
Log in

Insight into the urea binding and K166R mutation stabilizing mechanism of TlpB: Molecular dynamics and principal component analysis study

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Chemoreceptor TlpB(Tlp=transducer-like protein), which has been demonstrated to respond to pH sensing function, is crucial for the survival of Helicobacter pylori(H. pylori) in host stomach. Urea was proposed to be essential for TlpB’s pH sensing function via binding with the Per-ARNT-Sim(PAS) domain of TlpB. Additionally, K166R mutation of the TlpB protein has also been proven to have a similar effect on TlpB pH sensing as urea binding. Although X-ray crystallographic studies have been carried out for urea-bound TlpB, the molecular mechanism for the stabilization of TlpB induced by urea binding and K166R mutation remains to be elucidated. In this study, molecular dynamics simulations combined with principal component analysis(PCA) for the simulation results were used to gain an insight into the molecular mechanism of the stabilization of urea on TlpB protein. The formed H-bonds and salt-bridges surrounding Asp114, which were induced by both urea binding and K166R mutation of TlpB, were important to the stabilization of TlpB by urea. The similarity between the urea binding and K166R mutation as well as their differences in effect has been explicitly demonstrated with computer simulations at atomic-level. The findings may pave the way for the further researches of TlpB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaser M. J., EMBO Reports, 2006, 7, 956

    Article  CAS  Google Scholar 

  2. Suerbaum S., Josenhans C., Nature Reviews Microbiology, 2007, 5, 441

    Article  CAS  Google Scholar 

  3. Brown L. M., Epidemiologic Reviews, 2000, 22, 283

    Article  CAS  Google Scholar 

  4. Croxen M. A., Sisson G., Melano R., Hoffman P. S., Journal of Bacteriology, 2006, 188, 2656

    Article  CAS  Google Scholar 

  5. Schreiber S., Konradt M., Groll C., Scheid P., Hanauer G., Werling H. O., Josenhans C., Suerbaum S., Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5024

    Article  CAS  Google Scholar 

  6. Goers Sweeney E., Henderson J. N., Goers J., Wreden C., Hicks K. G., Foster J. K., Parthasarathy R., Remington S. J., Guillemin K., Structure, 2012, 20, 1177

    Article  CAS  Google Scholar 

  7. Desforges J. F., Peterson W. L., New England Journal of Medicine, 1991, 324, 1043

    Article  Google Scholar 

  8. Gisbert J. P., Khorrami S., Carballo F., Calvet X., Gené E., Cochrane Database of Systematic Reviews, 2004, 2

    Google Scholar 

  9. Ernst P. B., Gold B. D., Annual Reviews in Microbiology, 2000, 54, 615

    Article  CAS  Google Scholar 

  10. Fuccio L., Zagari R. M., Eusebi L. H., Laterza L., Cennamo V., Ceroni L., Grilli D., Bazzoli F., Annals of Internal Medicine, 2009, 151, 121

    Article  Google Scholar 

  11. El-Omar E. M., Carrington M., Chow W. H., McColl K. E., Bream J. H., Young H. A., Herrera J., Lissowska J., Yuan C. C., Rothman N., Nature, 2000, 404, 398

    Article  CAS  Google Scholar 

  12. Coussens L. M., Werb Z., Nature, 2002, 420, 860

    Article  CAS  Google Scholar 

  13. Graham D. Y., Lu H., Yamaoka Y., Helicobacter, 2007, 12, 275

    Article  Google Scholar 

  14. Fischbach L., Evans E., Alimentary Pharmacology & Therapeutics, 2007, 26, 343

    Article  CAS  Google Scholar 

  15. Chey W. D., Wong B. C., The American Journal of Gastroenterology, 2007, 102, 1808

    Article  CAS  Google Scholar 

  16. Graham D. Y., Clinical Gastroenterology and Hepatology, 2009, 7, 145

    Article  Google Scholar 

  17. Pittman M. S., Goodwin M., Kelly D. J., Microbiology, 2001, 147, 2493

    CAS  Google Scholar 

  18. Foynes S., Dorrell N., Ward S. J., Stabler R. A., McColm A. A., Rycroft A. N., Wren B. W., Infection and Immunity, 2000, 68, 2016

    Article  CAS  Google Scholar 

  19. Lowenthal A. C., Simon C., Fair A. S., Mehmood K., Terry K., Anastasia S., Ottemann K. M., Microbiology, 2009, 155, 1181

    Article  CAS  Google Scholar 

  20. Cerda O., Rivas A., Toledo H., FEMS Microbiology Letters, 2003, 224, 175

    Article  CAS  Google Scholar 

  21. Schweinitzer T., Mizote T., Ishikawa N., Dudnik A., Inatsu S., Schreiber S., Suerbaum S., Aizawa S. I., Josenhans C., Journal of Bacteriology, 2008, 190, 3244

    Article  CAS  Google Scholar 

  22. Rader B. A., Wreden C., Hicks K. G., Sweeney E. G., Ottemann K. M., Guillemin K., Microbiology, 2011, 157, 2445

    Article  CAS  Google Scholar 

  23. Jolliffe I., Principal Component Analysis, Wiley Online Library, New York, 2005

    Google Scholar 

  24. Discovery Studio, Version 2.5, Accelrys Inc., San Diego, CA, 2009

  25. Hess B., Kutzner C., van der Spoel D., Lindahl E., Journal of Chemical Theory and Computation, 2008, 4, 435

    Article  CAS  Google Scholar 

  26. Oostenbrink C., Villa A., Mark A. E., van Gunsteren W. F., Journal of Computational Chemistry, 2004, 25, 1656

    Article  CAS  Google Scholar 

  27. Schuttelkopf A. W., van Aalten D. M., Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1355

    Article  Google Scholar 

  28. Darden T., York D., Pedersen L., J. Chem. Phys., 1993, 98, 10089

    Article  CAS  Google Scholar 

  29. Hoover W. G., Physical Review A, 1985, 31, 1695

    Article  Google Scholar 

  30. Hess B., Bekker H., Berendsen H. J., Fraaije J. G., J. Comput. Chem., 1997, 18, 1463

    Article  CAS  Google Scholar 

  31. Xu Y., Cui Y. L., Zheng Q. C., Zhang H. X., Sun J. Z., Chem. J. Chinese Universities, 2013, 34(5), 1226

    CAS  Google Scholar 

  32. Mezei M., J. Comput. Chem., 2010, 31, 2658

    Article  CAS  Google Scholar 

  33. Humphrey W., Dalke A., Schulten K., Journal of Molecular Graphics, 1996, 14, 33

    Article  CAS  Google Scholar 

  34. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E., J. Comput. Chem., 2004, 25, 1605

    Article  CAS  Google Scholar 

  35. Amadei A., Linssen A., Berendsen H. J., Proteins: Structure, Function and Bioinformatics, 1993, 17, 412

    Article  CAS  Google Scholar 

  36. Garcia A. E., Physical Review Letters, 1992, 68, 2696

    Article  CAS  Google Scholar 

  37. Zhou L., Siegelbaum S. A., Structure, 2007, 15, 655

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingchuan Zheng or Hongxing Zhang.

Additional information

Supported by the National Natural Science Foundation of China(No.21273095).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zheng, Q., Xu, Y. et al. Insight into the urea binding and K166R mutation stabilizing mechanism of TlpB: Molecular dynamics and principal component analysis study. Chem. Res. Chin. Univ. 30, 1011–1017 (2014). https://doi.org/10.1007/s40242-014-4135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-4135-6

Keywords

Navigation