Skip to main content
Log in

Synthetic control method for crystallite size of MOF-5

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

We reported a dripping solvothermal method for synthesizing metal-organic framework-5(MOF-5). It started from separately dissolving Zn(NO3)2 and terephthalic acid(H2BDC) in dimethyl formamide(DMF), and then dripping one solution into the other. Results of SEM, XRD and laser particle size distribution show that regular cubic-shaped and micro-crystallite powder of MOF-5 can be obtained. The d 0.5(volume-median-diameter) values are 4.32 μm for particles prepared by dripping Zn(NO3)2 into H2BDC(ZH) and 9.32 μm for those prepared by dripping H2BDC into Zn(NO3)2(HZ), much smaller than 22.7 μm that of particles prepared by the traditional adding water solvothermal method(L). The standard deviations of the particle size distributions fitted by the GaussAmp model are 2.49, 4.38 and 15.4 respectively for ZH, HZ and L, further revealing narrower size distributions of particles prepared by the dripping method. In addition, the Langmuir specific surface areas are 923 m2/g for ZH and 868 m2/g for HZ. The TGA results present mass losses of 4.18% and 3.62% at 105 °C, 17.19% and 14.78% at 245 °C, 39.04% and 34.85% at 600 °C separately for ZH and HZ, which correspond to the removal of H2O, DMF and the decomposition of MOF-5. This indicates that MOF-5 has a strong adsorption ability for small molecules. Besides, the mass loss of 48.39%(ZH) and 41.02%(HZ) between 400 °C and 600 °C are less than the theoretical value of 57.81% for MOF-5 decomposition to ZnO, suggesting that an impure phase with an extra amount of ZnO may exist in the cavities of MOF-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun D., Ma S., Ke Y., Collins D. J., Zhou H. C., J. Am. Chem. Soc., 2006, 128(12), 3896

    Article  CAS  Google Scholar 

  2. Lan A., Li K., Wu H., Olson D. H., Emge T. J., Ki W., Hong M., Li J., Angew. Chem. Int. Ed., 2009, 48(13), 2334

    Article  CAS  Google Scholar 

  3. Lu G., Hupp J. T., J. Am. Chem. Soc., 2010, 132(23), 7832

    Article  CAS  Google Scholar 

  4. Kreno L. E., Leong K., Farha O. K., Chem. Rev., 2012, 112, 1105

    Article  CAS  Google Scholar 

  5. Wu C. D., Hu A., Zhang L., Lin W., J. Am. Chem. Soc., 2005, 127(25), 8940

    Article  CAS  Google Scholar 

  6. Lee J. Y., Farha O. K., Roberts J., Chem. Soc. Rev., 2009, 38(5), 1450

    Article  CAS  Google Scholar 

  7. Rieter W. J., Pott K. M., Taylor K. M. L., Lin W., J. Am. Chem. Soc., 2008, 130(35), 11584

    Article  CAS  Google Scholar 

  8. Horcajada P., Serre C., Maurin G., J. Am. Chem. Soc., 2008, 130(21), 6774

    Article  CAS  Google Scholar 

  9. Horcajada P., Chalati T., Serre C., Nat. Mater., 2009, 9(2), 172

    Article  Google Scholar 

  10. Allan P. K., Wheatley P. S., Aldous D., Dalton Trans., 2012, 41(14), 4060

    Article  CAS  Google Scholar 

  11. Yang B. C., Jiang Y. D., Qin X. J., Chen Z. L., Ren F., Chem. J. Chinese Universities, 2012, 33(1), 26

    Google Scholar 

  12. Wiers B. M., Foo M. L., Balsara N. P., Long J. R., J. Am. Chem. Soc., 2011, 133(37), 14522

    Article  CAS  Google Scholar 

  13. Combelles C., Yahia M. B., Pedesseau L., Doublet M. L., J. Phys. Chem. C, 2010, 114(20), 9518

    Article  CAS  Google Scholar 

  14. Combarieu G., Morcrette M., Millange F., Guillou N., Cabana J., Grey C. P., Margiolaki I., Férey G., Tarascon J. M., Chem. Mater., 2009, 21(8), 1602

    Article  Google Scholar 

  15. Yang L. M., Vajeeston P., Ravindran P., Fjellvåg H., Tilset M., Inorg. Chem., 2010, 49(22), 10283

    Article  CAS  Google Scholar 

  16. Baumann T. F., Metal-Organic Frameworks: Literature Survey and Recommendation of Potential Sorbent Materials, Lawrence Livermore National Laboratory(LLNL), Livermore, CA, 2010, 1

    Book  Google Scholar 

  17. Li H., Eddaoudi M., O’Keeffe M., Yaghi O. M., Nature, 1999, 402(6759), 276

    Article  CAS  Google Scholar 

  18. Huang L., Wang H., Chen J., Wang Z., Sun J., Zhao D., Yan Y., Microporous Mesoporous Mater., 2003, 58(2), 105

    Article  CAS  Google Scholar 

  19. Kaye S. S., Dailly A., Yaghi O. M., Jeffrey R., J. Am. Chem. Soc., 2007, 129(46), 14176

    Article  CAS  Google Scholar 

  20. Hermes S., Zacher D., Baunemann A., Wöll C., Fischer R. A., Chem. Mater., 2007, 19(9), 2168

    Article  CAS  Google Scholar 

  21. Yoo Y., Lai Z., Jeong H. K., Microporous Mesoporous Mater., 2009, 123(1), 100

    Article  CAS  Google Scholar 

  22. Li M., Dinca M., J. Am. Chem. Soc., 2011, 133(33), 12926

    Article  CAS  Google Scholar 

  23. Falcaro P., Hill A. J., Nairn K. M., Jasieniak J., Mardel J. I., Bastow T. J., Mayo S. C., Gimona M., Gomez D., Whitfield H. J., Nat. Commun., 2011, 2, 237

    Article  Google Scholar 

  24. Li Y., Yang R. T., J. Am. Chem. Soc., 2005, 128(25), 726

    Google Scholar 

  25. Panella B., Hirscher M., Adv. Mater., 2005, 17(5), 538

    Article  CAS  Google Scholar 

  26. Li Y., Yang R. T., J. Am. Chem. Soc., 2006, 128(25), 8136

    Article  CAS  Google Scholar 

  27. Hafizovic J., Bjørgen M., Olsbye U., Dietzel P. D. C., Bordiga S., Prestipino C., Lamberti C., Lillerud K. P., J. Am. Chem. Soc., 2007, 129(12), 3612

    Article  CAS  Google Scholar 

  28. Ravon U., Savonnet M., Aguado S., Microporous Mesoporous Mater., 2010, 129(3), 319

    Article  CAS  Google Scholar 

  29. Thirumurugan A., Rao C., J. Mater. Chem., 2005, 15(35/36), 3852

    Article  CAS  Google Scholar 

  30. Rowsell J. L., Yaghi O. M., Microporous Mesoporous Mater., 2004, 73(1), 3

    Article  CAS  Google Scholar 

  31. Choi J. S., Son W. J., Kim J., Ahn W. S., Microporous Mesoporous Mater., 2008, 116(1), 727

    Article  CAS  Google Scholar 

  32. Kondo S., Stone C. H., Abe L., Adsorption Science, Chemical Industry Press, Beijing, 1999, 31

    Google Scholar 

  33. Zhao Z., Li Z., Lin Y. S., Ind. Eng. Chem. Res., 2009, 48(22), 10015

    Article  CAS  Google Scholar 

  34. Chen B., Wang X., Zhang Q., Xi X., Cai J., Qi H., Shi S., Wang J., Yuan D., Fang M., J. Mater. Chem., 2010, 20(18), 3758

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Liu.

Additional information

Supported by the National Natural Science Foundation of China(No.51274239), the Fundamental Research Funds for the Central Universities of Central South University, China(No.2013zzts191) and the Open-end Fund for the Valuable and Precision Instruments of Central South University, China(No.CSUZC2013028).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, P., Yuan, C., Xu, J. et al. Synthetic control method for crystallite size of MOF-5. Chem. Res. Chin. Univ. 30, 356–361 (2014). https://doi.org/10.1007/s40242-014-3349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-3349-y

Keywords

Navigation