Skip to main content
Log in

Characterization and three-dimensional structural modeling of humic acid via molecular mechanics and molecular dynamic simulation

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The humic acid(HA) sample obtained from the alluvial soil was characterized by elemental composition, pyrolysis gas chromatography-mass spectrometry(Py-GC-MS) and solid-state 13C nuclear magnetic resonance (13C NMR) spectroscopy. There is high fat content and a few nitrogen-containing functional groups in HA. Py-GC-MS demonstrates the characterization and structural identification of HA. One long list of identified pyrolysis products was proposed for the construction of conceptual model of HA. Solid-state 13C NMR data indicate there are higher values of alkyl-C, O-alkyl-C and aryl-C in HA. The elemental composition, structural carbon distribution and 13C NMR spectroscopy of simulated HA are consistent with those of experimental HA. HyperChem® was used to simulate the three-dimensional molecular structure of the monomer, which was optimized by the molecular mechanics of the optimized potential for liquid simulations(OPLS) force field and molecular dynamics simulation to get the stable and balanced conformation. The deprotonation process study depicts that the degree of ionization of HA gets deeper, while the electronegativity of HA and the energy of van der Waals(vdW) increase. Moreover, the 3D structure of humic acid with −4 charges is the most stable. The deprotonation process is an endothermic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H. X., Yao L., Ding B., Luo J. H., Zhou G., Jiang B., Chem. J. Chinese Universities, 2013, 34(5), 1295

    CAS  Google Scholar 

  2. Diallo M. S., Simpson A., Gassman P. L., Faulon J. L., Johnson J. H., Goddard W. A., Hatcher P. G., Environ. Sci. Technol., 2003, 37, 1783

    Article  CAS  Google Scholar 

  3. Niederer C., Goss K. U., Environ. Sci. Technol., 2007, 41, 3646

    Article  CAS  Google Scholar 

  4. Albers C. N., Banta G. T., Jacobsen O. S., Hansen P. E., Eur. J. Soil Sci., 2008, 59, 693

    Article  CAS  Google Scholar 

  5. Schaumann G. E., Thiele-Bruhn S., Geoderma, 2011, 166, 1

    Article  CAS  Google Scholar 

  6. Chen Y. T., Ding J. D., Acta Polymerica Sinica, 2009, 12, 1238

    Article  Google Scholar 

  7. Schulten H. R., Leinweber P., J. Anal. Appl. Pyrolysis, 1996, 38, 1

    Article  CAS  Google Scholar 

  8. Swift R. S.; Ed.: Sparks D. L., Organic Matter Characterization, Methods of Soil Analysis, Soil Sci. Soc. Am., Madison, WI, 1996, 1018

  9. HyperChem Release 7 for Windows, Hypercube Inc., Gainesville, 2002

  10. Schulten H. R., Schnitzer M., Naturwissenschaften, 1995, 82, 487

    Article  CAS  Google Scholar 

  11. Rosa de la J. M., González-Pérez J. A., González-Vila F. J., Knicker H., Araújo M. F., Org. Geochem., 2011, 42, 791

    Article  Google Scholar 

  12. Lu X. Q., Hanna J. V., Johnson W. D., Appl. Geochem., 2000, 15, 1019

    Article  CAS  Google Scholar 

  13. Schniter M., Khan S. U., Humic Substance in the Environment, Marcel Dekker Inc., New York, 1972, 23

    Google Scholar 

  14. Hautala K., Peuravuori J., Pihlaja K., Water Res., 2000, 34, 246

    Article  CAS  Google Scholar 

  15. Baldock J. A., Skjemstad J. O., Org. Geochem., 2000, 31, 697

    Article  CAS  Google Scholar 

  16. Yuan J. C., Liu Y. F., Mei T. J., Wang X. H., Chem. Res. Chinese Universities, 2011, 27(6), 1014

    CAS  Google Scholar 

  17. Hatcher P. G., Org. Geochem., 1987, 11, 31

    Article  CAS  Google Scholar 

  18. Chen J. S., Chiu C. Y., Geoderma, 2003, 117, 129

    Article  CAS  Google Scholar 

  19. Marche T., Schnitzer M., Dinel H., Paré T., Champagne P., Schulten H. R., Facey G., Geoderma, 2003, 116, 345

    Article  CAS  Google Scholar 

  20. Malcolm R. L., MacCarthy P. L., Environ. Sci. Technol., 1986, 20, 904

    Article  CAS  Google Scholar 

  21. Yarkova T. A., Gyul’maliev A. M., Solid Fuel Chem., 2012, 46, 279

    Article  CAS  Google Scholar 

  22. Sein L. T., Varnum J. M., Jansen S. A., Environ. Sci. Technol., 1999, 33, 546

    Article  CAS  Google Scholar 

  23. Fuchs W., Die Chemie der Kohle., Springer, Berlin, 1931, 501

    Book  Google Scholar 

  24. Stevenson F. J., J. Environ. Qual., 1972, 1, 333

    Article  CAS  Google Scholar 

  25. Schulten H. R., Leinweber P., Biol. Fertility Soils, 2000, 30, 399

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-zhong Lü.

Additional information

Supported by the National Natural Science Foundation of China(Nos.40771099, 41271331).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, N., Lü, Yz. & Li, Gj. Characterization and three-dimensional structural modeling of humic acid via molecular mechanics and molecular dynamic simulation. Chem. Res. Chin. Univ. 29, 1180–1184 (2013). https://doi.org/10.1007/s40242-013-3156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-3156-x

Keywords

Navigation