Skip to main content
Log in

Theoretical analysis on magnetic properties of conjugated organic molecules containing borepin

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Theoretical study about the magnetic properties of conjugated organic molecules containing borepin with π current density was carried out. 1-(2,4,6-Trimethylphenyl)borepin moiety is the center and other different groups are situated on the both β sides, which are named molecules 1–12 as theoretical model in order to establish the relationship between aromaticity and geometry variation of borepin. The optimized molecular structures of molecules 1–12 are almost keeping planar and the C2–C3 bond length of borepin turns longer from molecule 1 to molecule 12. Different borepin-annulated ring could change the conjugated effect of π-electron between borepin and these bore-pin-annulated rings. Moreover, the molecule presents antiaromaticity, in other words, the molecule became unstable when the C2–C3 bond length of borepin extended more than ca. 0.1417 nm. But the β position fragment and substituent groups of borepin are not affected in this case, they are still steady. However, the central borepin ring current is counteracted by symmetrical overlap of it with affiliated borepin-annulated ring current. Hence, the central borepin ring breaking would be liable to occur. These molecules have higher vertical ionization potentials(VIPs) and lower vertical electron affinities(VEAs), which suggests that these molecules could easily exist in anionic form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li H., Jäkle F., Angew. Chem. Int. Ed., 2009, 48, 2313

    Article  CAS  Google Scholar 

  2. Cheng S. H., Fan F. Y., Xu Y., Li S., Zhu P. W., Li H. D., Liu J. S., Chem. Res. Chinese Universities, 2013, 29(4), 816

    Article  Google Scholar 

  3. Tan M., Lian G., Zhong X., Zhang S. J., Cui D. L., Wang Q. L., Chem. Res. Chinese Universities, 2012, 28(3), 387

    CAS  Google Scholar 

  4. Jakle F., Chem. Rev., 2010, 110, 3985

    Article  CAS  Google Scholar 

  5. Hudnall T. W., Gabbai F. P., J. Am. Chem. Soc., 2007, 129, 11978

    Article  CAS  Google Scholar 

  6. Liu X. Y., Bai D. R., Wang S., Angew. Chem. Int. Ed., 2006, 45, 5475

    Article  CAS  Google Scholar 

  7. Matsumi N., Naka K., Chujo Y., J. Am. Chem. Soc., 1998, 120, 10776

    Article  CAS  Google Scholar 

  8. Nagai A., Kokado K., Nagata Y., Chujo Y., Macromolecules, 2008, 41, 8295

    Article  CAS  Google Scholar 

  9. Zhou G., Baumgarten M., Müllen K., J. Am. Chem. Soc., 2008, 130, 12477

    Article  CAS  Google Scholar 

  10. Ashe III A. J., Klein W., Rousseau R., Organometallics, 1993, 12, 3225

    Article  CAS  Google Scholar 

  11. Mercier L. G., Piers W. E., Parvez M., Angew. Chem. Int. Ed., 2009, 48, 6108

    Article  CAS  Google Scholar 

  12. Caruso A. Jr., Siegler M. A., Tovar J. D., Angew. Chem. Int. Ed., 2010, 49, 4213

    Article  CAS  Google Scholar 

  13. Subramanian G., Schleyer P. V. R., Jiao H. J., Organometallics, 1997, 16, 2362

    Article  CAS  Google Scholar 

  14. Kassaee M. Z., Musavi S. M., Motamedi E., J. Theor. Comput. Chem., 2010, 9, 379

    Article  CAS  Google Scholar 

  15. Jinguji A., Nakazawa R., Yagi T., Murata I., Tetrahedron, 1994, 50, 6495

    Article  Google Scholar 

  16. Schulman J. M., Disch R. L., Organometallics, 2000, 19, 2932

    Article  CAS  Google Scholar 

  17. Herndon W. C., J. Am. Chem. Soc., 1973, 95, 2404

    Article  CAS  Google Scholar 

  18. Aihara J., J. Org. Chem., 1976, 41, 2488

    Article  CAS  Google Scholar 

  19. Jug K., J. Org. Chem., 1983, 48, 1344

    Article  CAS  Google Scholar 

  20. Dewar M. J. S., de Llano C., J. Am. Chem. Soc., 1969, 91, 789

    Article  CAS  Google Scholar 

  21. Hess B. A. Jr., Schaad L. J., J. Am. Chem. Soc., 1971, 93, 305

    Article  CAS  Google Scholar 

  22. Pople J. A., J. Chem. Phys., 1956, 24, 1111

    Article  CAS  Google Scholar 

  23. Dauben H. J. Jr., Wilson J. D., Laity J. L., J. Am. Chem. Soc., 1969, 91, 1991

    Article  CAS  Google Scholar 

  24. Benson R. C., Flygare W. H., J. Am. Chem. Soc., 1970, 92, 7523

    Article  Google Scholar 

  25. Jusélius J., Sundholm D., Phys. Chem. Chem. Phys., 1999, 1, 3429

    Article  Google Scholar 

  26. Morao I., Lecea B., Cossío F. P., J. Org. Chem., 1997, 62, 7033

    Article  Google Scholar 

  27. Geuenich D., Hess K., Köhler F., Herges R., Chem. Rev., 2005, 105, 3758

    Article  CAS  Google Scholar 

  28. Jusélius J., Sundholm D., Gauss J., J. Chem. Phys., 2004, 121, 3952

    Article  Google Scholar 

  29. Lazzeretti P., Malagoli M., Zanasi R., Chem. Phys. Lett., 1994, 220, 299

    Article  CAS  Google Scholar 

  30. Pelloni S., Lazzeretti P., Int. J. Quantum Chem., 2011, 111, 356

    Article  CAS  Google Scholar 

  31. Faraday M., Philos. Trans. R. London, 1825, 115, 440

    Article  Google Scholar 

  32. Rzepa H. S., Chem. Rev., 2005, 105, 3697

    Article  CAS  Google Scholar 

  33. Schleyer P. V. R., Maerker C., Dransfeld A., Jiao H. J., Hommes N. J. R. V. E., J. Am. Chem. Soc., 1996, 118, 6317

    Article  CAS  Google Scholar 

  34. Chen Z. F., Wannere C. S., Corminboeuf C., Puchta R., Schleyer P. V., Chem. Rev., 2005, 105, 3842

    Article  CAS  Google Scholar 

  35. Bleeke J. R., Chem. Rev., 2001, 101, 1205

    Article  CAS  Google Scholar 

  36. Schleyer P. V., Chem. Rev., 2001, 101, 1115

    Article  CAS  Google Scholar 

  37. Becke A. D., Phys. Rev. A, 1988, 38, 3098

    Article  CAS  Google Scholar 

  38. Reed A. E., Curtiss L. A., Weinhold F., Chem. Rev., 1988, 88, 899

    Article  CAS  Google Scholar 

  39. Keith T. A., Bader R. F. W., J. Chem. Phys., 1993, 99, 3669

    Article  CAS  Google Scholar 

  40. Zanasi R., J. Chem. Phys., 1996, 105, 1460

    Article  CAS  Google Scholar 

  41. Bader R. F. W., Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford, 1990

    Google Scholar 

  42. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., et al., Gaussian 09, Revision A.02, Gaussian Inc., Wallingford CT, 2009

    Google Scholar 

  43. Heine T., Corminboeuf C., Seifert G., Chem. Rev., 2005, 105, 3889

    Article  CAS  Google Scholar 

  44. Li X. H., Yin G. X., Zhang X. Z., J. Mol. Struct.(Theochem.), 2010, 957, 61

    Article  CAS  Google Scholar 

  45. Becke A. D., Edgekombe K. E., J. Chem. Phys., 1990, 92, 5397

    Article  CAS  Google Scholar 

  46. Raúl M. A., Fernando M., Claudio O. A., Sebastián M. R., Patricio F., J. Phys. Chem. A, 2011, 115, 4397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-xing Zhang.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21003057, 21173096) and the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110061110018).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, W., Bai, Fq., Xia, Bh. et al. Theoretical analysis on magnetic properties of conjugated organic molecules containing borepin. Chem. Res. Chin. Univ. 29, 962–968 (2013). https://doi.org/10.1007/s40242-013-3129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-3129-0

Keywords

Navigation