Skip to main content

Advertisement

Log in

Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

The Persian Gulf consider as the fundamental biological marine condition between the seas. There is a different assortment of marine life forms including corals, wipes, and fish in this marine condition. Mangrove timberlands are found all through this sea-going biological system. Sullying of the Persian Gulf to oil-based goods is the principle of danger to this marine condition and this contamination can effectively affect this differing marine condition. Numerous specialists examined the result of oil contamination on Persian Gulf marine creatures including corals sponges, bivalves, and fishes. These analysts affirmed this oil contamination on the Persian Gulf significantly diminished biodiversity. Diverse microorganisms fit to consume oil-based commodities detailed by various scientists from the Persian Gulf and their capacity to the debasement of unrefined petroleum has been examined. There has additionally been little exploration of cyanobacteria, yeast, and unrefined petroleum debasing organisms in this sea-going environment. Biosurfactants are amphipathic molecules that upgrade the disintegration of oil and increment their bioavailability to corrupt microscopic organisms. Additionally, biosurfactant-producing bacteria were discovered from the Persian Gulf, and the capability to degradation of crude oil in microscale was evaluated. The current review article aims to collect the finding of various researches performed in the Persian Gulf on oil pollution and crude-oil biodegradation. It is expected that by applying biological methods in combination with mechanical and chemical methods, the hazard consequences of crude-oil contamination on this important aquatic ecosystem at the world will be mitigated and a step towards preserving this diverse marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McGenity TJ, Folwell BD, McKew BA, Sanni GO. Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst. 2012;8:10.

    Article  Google Scholar 

  2. Chen Q, Li J, Liu M, Sun H, Bao M. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PLoS One. 2017;12:e0174445.

    Article  CAS  Google Scholar 

  3. Simister R, Taylor MW, Rogers KM, Schupp PJ, Deines P. Temporal molecular and isotopic analysis of active bacterial communities in two New Zealand sponges. FEMS Microbiol Ecol. 2013;85:195–205.

    Article  Google Scholar 

  4. Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.

    Article  CAS  Google Scholar 

  5. Cappello S, Russo D, Santisi S, Calogero R, Gertler C, Crisafi F, et al. Presence of hydrocarbon-degrading bacteria in the gills of mussel Mytilus galloprovincialis in a contaminated environment: a mesoscale simulation study. Chem Ecol. 2012;28:239–52.

  6. Ghanavati H, Emtiazi G, Hassanshahian M. Synergism effects of phenol-degrading yeast and ammonia-oxidizing bacteria for nitrification in coke wastewater of Esfahan steel company. Waste Manag Res. 2008;26:203–8.

    Article  CAS  Google Scholar 

  7. Gong Y, Zhao X, Cai Z, O’Reilly SE, Hao X, Zhao D. A review of oil, dispersed oil and sediment interactions in the aquatic environment: influence on the fate, transport and remediation of oil spills. Mar Pollut Bull. 2014;79:16–33.

    Article  CAS  Google Scholar 

  8. Hassanshahian M, Emtiazi G, Caruso G, Cappello S. Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: a mesocosm simulation study. Mar Environ Res. 2014a;95:28–38.

    Article  CAS  Google Scholar 

  9. Hassanshahian M, Yakimov MM, Denaro R, Genovese M, Cappello S. Using real-time PCR to assess changes in the crude oil degrading microbial community in contaminated seawater mesocosms. Int Biodeterior Biodegrad. 2014b;93:241–8.

    Article  CAS  Google Scholar 

  10. Hassanshahian M, Zeynalipour MS, Musa FH. Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance). Mar Pollut Bull. 2014c;82:39–44.

    Article  CAS  Google Scholar 

  11. de Mora S, Tolosa I, Fowler SW, Villeneuve JP, Cassi R, Cattini C. Distribution of petroleum hydrocarbons and organochlorinated contaminants in marine biota and coastal sediments from the ROPME Sea area during 2005. Mar Pollut Bull. 2010;60:2323–49.

    Article  CAS  Google Scholar 

  12. Sale PF, Feary DA, Burt JA, Bauman AG, Cavalcante GH, Drouillard KG, et al. The growing need for sustainable ecological management of marine communities of the Persian Gulf. Ambio. 2011;40:4–17.

  13. Ahmed M, El-Raey M, Nasr S, Frihy O. Socioeconomic impact of pollution on ecosystems of the Arabian gulf. Environ Int. 1998;24:229–37.

    Article  Google Scholar 

  14. Al-Mailem D, Kansour M, Radwan S. Bacterial communities associated with biofouling materials used in bench-scale hydrocarbon bioremediation. Environ Sci Pollut Res. 2015;22:3570–85.

    Article  CAS  Google Scholar 

  15. Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS. Hydrocarbon accumulation by picocyanobacteria from the Arabian gulf. J Appl Microbiol. 2001;91:533–40.

    Article  CAS  Google Scholar 

  16. El Samra MI, Emara HI, Shunbo F. Dissolved petroleum hydrocarbon in the northwestern Arabian gulf. Mar Pollut Bull. 1986;17:65–8.

    Article  Google Scholar 

  17. Marchand M, Monfort J-P, Rubio A. Distribution of hydrocarbons in water and marine sediments after the Amoco Cadez and Istoc. 1. Oil spills. Energy Environ. 1982;1:487–509.

    Google Scholar 

  18. Sen Gupta R, Kureishy TW. Present state of oil pollution in the northern Indian Ocean. Mar Pollut Bull. 1981;12:295–301.

    Article  CAS  Google Scholar 

  19. Van Hamme JD, Singh A, Ward OP. Recent advances in petroleum microbiology. Microbiol Mol Biol Rev. 2003;67:503–49.

    Article  CAS  Google Scholar 

  20. Leahy JG, Colwell RR. Microbial degradation of hydrocarbons in the environment. Microbiol Rev. 1990;54:305–15.

    Article  CAS  Google Scholar 

  21. Head IM, Jones DM, Röling WFM. Marine microorganisms make a meal of oil. Nat Rev Microbiol. 2006;4:173–82.

    Article  CAS  Google Scholar 

  22. Balachandran C, Duraipandiyan V, Balakrishna K, Ignacimuthu S. Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil. Bioresour Technol. 2012;112:83–90.

    Article  CAS  Google Scholar 

  23. Bovio E, Gnavi G, Prigione V, Spina F, Denaro R, Yakimov M, et al. The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ. 2017;576:310–8.

  24. Matsubara M, Lynch JM, De Leij FAAM. A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzym Microb Technol. 2006;39:1365–72.

    Article  CAS  Google Scholar 

  25. Antonio FJ, Mendes RS, Thomaz SM. Identifying and modeling patterns of tetrapod vertebrate mortality rates in the Gulf of Mexico oil spill. Aquat Toxicol. 2011;105:177–9.

    Article  CAS  Google Scholar 

  26. Baguley JG, Montagna PA, Cooksey C, Hyland JL, Bang HW, Morrison C, et al. Community response of deep-sea soft-sediment metazoan meiofauna to the Deepwater horizon blowout and oil spill. Mar Ecol Prog Ser. 2015;528:127–40.

  27. King GM, Kostka JE, Hazen TC, Sobecky PA. Microbial responses to the deepwater horizon oil spill: from coastal wetlands to the deep sea. Annu Rev Mar Sci. 2015;7:377–401.

    Article  CAS  Google Scholar 

  28. Bragg JR, Prince RC, Harner EJ, Atlas RM. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature. 1994;368:413–8.

    Article  CAS  Google Scholar 

  29. Carls MG, Rice SD, Hose JE. Sensitivity of fish embryos to weathered crude oil: part I. low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environ Toxicol Chem. 1999;18:481–93.

    Article  CAS  Google Scholar 

  30. Barth H-J. The influence of cyanobacteria on oil polluted intertidal soils at the Saudi Arabian gulf shores. Mar Pollut Bull. 2003;46:1245–52.

    Article  CAS  Google Scholar 

  31. Leifer I, Boles J. Measurement of marine hydrocarbon seep flow through fractured rock and unconsolidated sediment. Mar Pet Geol. 2005;22:551–68.

    Article  Google Scholar 

  32. Logan GA, Jones AT, Kennard JM, Ryan GJ, Rollet N. Australian offshore natural hydrocarbon seepage studies, a review and re-evaluation. Mar Pet Geol. 2010;27:26–45.

    Article  CAS  Google Scholar 

  33. Rosenberg E, Kellogg CA, Rohwer F. Coral Microbiology. Oceanography. 2007a;20:146–54.

    Article  Google Scholar 

  34. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007b;5:355–62.

    Article  CAS  Google Scholar 

  35. Brinkmann CM, Marker A, Kurtböke DI. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity. 2017;9:40.

    Article  CAS  Google Scholar 

  36. Yakimov MM, Denaro R, Genovese M, Cappello S, D’Auria G, Chernikova TN, et al. Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol. 2005;7:1426–41.

  37. Hassanshahian M, Emtiazi G. Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation. Int Biodeterior Biodegrad. 2008;62:170–8.

    Article  CAS  Google Scholar 

  38. Hassanshahian M, Ahmadinejad M, Tebyanian H, Kariminik A. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar Pollut Bull. 2013;73:300–5.

    Article  CAS  Google Scholar 

  39. Council NR. Oil spill dispersants: efficacy and effects: National Academies Press; 2005.

  40. Emtiazi G, Saleh T, Hassanshahian M. The effect of bacterial glutathione S-transferase on morpholine degradation. Biotechnol J. 2009;4:202–5.

    Article  CAS  Google Scholar 

  41. Payne JR, Clayton JR, Kirstein BE. Oil/suspended particulate material interactions and sedimentation. Spill Sci Technol Bull. 2003;8:201–21.

    Article  CAS  Google Scholar 

  42. Muschenheim DK, Lee K. Removal of oil from the sea surface through particulate interactions: review and prospectus. Spill Sci Technol Bull. 2002;8:9–18.

    Article  CAS  Google Scholar 

  43. Bragg J, Owens E. Clay-oil flocculation as a natural cleansing process following oil spills: part 1. Studies of shoreline sediments and residues from past spills. Environment Canada, Ottawa, ON(Canada). 1994;1:1–23.

    Google Scholar 

  44. Bragg JR, Owens EH. Shoreline cleansing by interactions between oil and fine mineral particles. Int Oil Spill Conf Proc. 1995;1995:219–27.

    Article  Google Scholar 

  45. Bragg J, Yang S. Clay-oil flocculation and its effects on the rate of natural cleansing in Prince William sound following the: Exxon Valdez; 1993.

  46. Jahns HO, Bragg JR, Dash LC, Owens EH. Natural cleaning of shorelines following the Exxon Valdez spill. Int Oil Spill Conf Proc. 1991;1991:167–76.

    Article  Google Scholar 

  47. Lee K. Oil–particle interactions in aquatic environments: influence on the transport, fate, effect and remediation of oil spills. Spill Sci Technol Bull. 2002;8:3–8.

    Article  CAS  Google Scholar 

  48. Sterling MC, Bonner JS, Ernest ANS, Page CA, Autenrieth RL. Application of fractal flocculation and vertical transport model to aquatic sol–sediment systems. Water Res. 2005;39:1818–30.

    Article  CAS  Google Scholar 

  49. Bandara UC, Yapa PD, Xie H. Fate and transport of oil in sediment laden marine waters. J Hydro-environ Res. 2011;5:145–56.

    Article  Google Scholar 

  50. Ajijolaiya LO, Hill PS, Khelifa A, Islam RM, Lee K. Laboratory investigation of the effects of mineral size and concentration on the formation of oil–mineral aggregates. Mar Pollut Bull. 2006;52:920–7.

    Article  CAS  Google Scholar 

  51. Stoffyn-Egli P, Lee K. Formation and characterization of oil–mineral aggregates. Spill Sci Technol Bull. 2002;8:31–44.

    Article  CAS  Google Scholar 

  52. Omotoso OE, Munoz VA, Mikula RJ. Mechanisms of crude oil–mineral interactions. Spill Sci Technol Bull. 2002;8:45–54.

    Article  CAS  Google Scholar 

  53. de la Huz R, Lastra M, Junoy J, Castellanos C, Viéitez JM. Biological impacts of oil pollution and cleaning in the intertidal zone of exposed sandy beaches: preliminary study of the “prestige” oil spill. Estuar Coast Shelf Sci. 2005;65:19–29.

    Article  CAS  Google Scholar 

  54. Hassanshahian M, Emtiazi G, Kermanshahi RK, Cappello S. Comparison of oil degrading microbial communities in sediments from the Persian Gulf and Caspian Sea. Soil Sediment Contam. 2010;19:277–91.

    Article  CAS  Google Scholar 

  55. Yakimov MM, Giuliano L, Denaro R, Crisafi E, Chernikova TN, Abraham W-R, et al. Thalassolituus oleivorans gen. Nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol. 2004;54:141–8.

  56. Al-Awadhi H, Al-Mailem D, Dashti N, Khanafer M, Radwan S. Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill. Arch Microbiol. 2012a;194:689–705.

    Article  CAS  Google Scholar 

  57. Al-Awadhi H, Dashti N, Kansour M, Sorkhoh N, Radwan S. Hydrocarbon-utilizing bacteria associated with biofouling materials from offshore waters of the Arabian gulf. Int Biodeterior Biodegradation. 2012b;69:10–6.

    Article  CAS  Google Scholar 

  58. Hassanshahian M, Emtiazi G, Cappello S. Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull. 2012a;64:7–12.

    Article  CAS  Google Scholar 

  59. Hassanshahian M, Tebyanian H, Cappello S. Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar Pollut Bull. 2012b;64:1386–91.

    Article  CAS  Google Scholar 

  60. Ellis LBM, Hou BK, Kang W, Wackett LP. The University of Minnesota biocatalysis/biodegradation database: post-genomic data mining. Nucleic Acids Res. 2003;31:262–5.

    Article  CAS  Google Scholar 

  61. Al-Mailem D, Eliyas M, Khanafer M, Radwan S. Culture-dependent and culture-independent analysis of hydrocarbonoclastic microorganisms indigenous to hypersaline environments in Kuwait. Microb Ecol. 2014a;67:857–65.

    Article  Google Scholar 

  62. Al-Mailem DM, Eliyas M, Radwan S. Enhanced bioremediation of oil-polluted, hypersaline, coastal areas in Kuwait via vitamin-fertilization. Environ Sci Pollut Res. 2014b;21:3386–94.

    Article  CAS  Google Scholar 

  63. Giovannoni SJ. Evolution, diversity and molecular ecology of marine prokaryotes. Microbial Ecol Oceans. 2000:47–84.

  64. Karimi M, Hassanshahian M. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman. Braz J Microbiol. 2016;47:18–24.

    Article  CAS  Google Scholar 

  65. Church MJ, Björkman KM, Karl DM, Saito MA, Zehr JP. Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limnol Oceanogr. 2008;53:63–77.

    Article  CAS  Google Scholar 

  66. Jones KL, Rhodes-Roberts M. Physiological properties of nitrogen-scavenging Bacteria from the marine environment. J Appl Bacteriol. 1980;49:421–33.

    Article  CAS  Google Scholar 

  67. Radwan S, Mahmoud H, Khanafer M, Al-Habib A, Al-Hasan R. Identities of Epilithic hydrocarbon-utilizing Diazotrophic Bacteria from the Arabian gulf coasts, and their potential for oil bioremediation without nitrogen supplementation. Microb Ecol. 2010;60:354–63.

    Article  CAS  Google Scholar 

  68. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K. Characterization of diverse hydrocarbon-degrading Bacteria isolated from Indonesian seawater. Microbes Environ. 2007;22:412–5.

    Article  Google Scholar 

  69. Radwan S. Microbiology of oil-contaminated desert soils and coastal areas in the Arabian gulf region. In: Dion P, Nautiyal CS, editors. Microbiology of extreme soils. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2008. p. 275–98.

    Chapter  Google Scholar 

  70. Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria. Curr Opin Biotechnol. 2007;18:257–66.

    Article  CAS  Google Scholar 

  71. Engelhardt MA, Daly K, Swannell RPJ, Head IM. Isolation and characterization of a novel hydrocarbon-degrading, gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol. 2001;90:237–47.

    Article  CAS  Google Scholar 

  72. Al-Awadhi H, Sulaiman RHD, Mahmoud HM, Radwan SS. Alkaliphilic and halophilic hydrocarbon-utilizing bacteria from Kuwaiti coasts of the Arabian gulf. Appl Microbiol Biotechnol. 2007;77:183–6.

    Article  CAS  Google Scholar 

  73. Edlund A, Jansson JK. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments. FEMS Microbiol Ecol. 2008;65:513–25.

    Article  CAS  Google Scholar 

  74. Gutierrez T, Singleton DR, Aitken MD, Semple KT. Stable isotope probing of an algal bloom to identify uncultivated members of the <span class="named-content genus-species" id="named-content-1">Rhodobacteraceae</span> associated with low-molecular-weight polycyclic aromatic hydrocarbon degradation. Appl Environ Microbiol. 2011;77:7856–60.

    Article  CAS  Google Scholar 

  75. Al-Mailem D, Sorkhoh N, Al-Awadhi H, Eliyas M, Radwan S. Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian gulf. Extremophiles. 2010a;14:321–8.

    Article  CAS  Google Scholar 

  76. Al-Mailem DM, Sorkhoh NA, Salamah S, Eliyas M, Radwan SS. Oil-bioremediation potential of Arabian gulf mud flats rich in diazotrophic hydrocarbon-utilizing bacteria. Int Biodeterior Biodegradation. 2010b;64:218–25.

    Article  CAS  Google Scholar 

  77. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely Halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol. 1992;42:568–76.

  78. Salleh, A.B., Ghazali, F.M., Rahman, R.N.Z.A., Basri, M., 2003. Bioremediation of petroleum hydrocarbon pollution.

    Google Scholar 

  79. Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z. Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environ Microbiol. 2011;13:1168–78.

    Article  CAS  Google Scholar 

  80. Schneiker S, dos Santos VAM, Bartels D, Bekel T, Brecht M, Buhrmester J, et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol. 2006;24:997–1004.

  81. Röling WFM, Couto de Brito IR, Swannell RPJ, Head IM. Response of Archaeal communities in beach sediments to spilled oil and bioremediation. Appl Environ Microbiol. 2004;70:2614–20.

    Article  CAS  Google Scholar 

  82. Chang Y-J, Stephen JR, Richter AP, Venosa AD, Brüggemann J, Macnaughton SJ, et al. Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J Microbiol Methods. 2000;40:19–31.

  83. Melcher RJ, Apitz SE, Hemmingsen BB. Impact of irradiation and polycyclic aromatic hydrocarbon spiking on microbial populations in marine sediment for future aging and biodegradability studies. Appl Environ Microbiol. 2002;68:2858–68.

    Article  CAS  Google Scholar 

  84. Radwan SS, Al-Hasan RH. Oil pollution and cyanobacteria, the ecology of cyanobacteria: Springer; 2000. p. 307–19.

  85. Al-Mailem DM, Al-Deieg M, Eliyas M, Radwan SS. Biostimulation of indigenous microorganisms for bioremediation of oily hypersaline microcosms from the Arabian gulf Kuwaiti coasts. J Environ Manag. 2017;193:576–83.

    Article  CAS  Google Scholar 

  86. Hassanshahian M. The effects of crude oil on marine microbial communities in sediments from the Persian Gulf and the Caspian Sea: a microcosm experiment. Int J Adv Biol Biomed Res. 2014a;2(1):1–17.

  87. Cerniglia CE, Gibson DT, Van Baalen C. Oxidation of naphthalene by cyanobacteria and microalgae. Microbiology. 1980;116:495–500.

    Article  CAS  Google Scholar 

  88. Cerniglia CE, Freeman JP, Althaus JR, van Baalen C. Metabolism and toxicity of 1- and 2-methylnaphthalene and their derivatives in cyanobacteria. Arch Microbiol. 1983;136:177–83.

    Article  CAS  Google Scholar 

  89. Sorkhoh N, Al-Hasan R, Radwan S, Höpner T. Self-cleaning of the Gulf. Nature. 1992;359:109–9.

  90. Amini BN, Hassanshahian M, Khoshrou SMR. Isolation and characterization of phenol degrading bacteria from Persian gulf. Int J Adv Biol Biomed Res. 2014;2(2):408–16.

    Google Scholar 

  91. Abed RM, Al-Thukair A, De Beer D. Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol. 2006;57:290–301.

    Article  CAS  Google Scholar 

  92. Al-Bader D, Eliyas M, Rayan R, Radwan S. Subsurface associations of Acaryochloris-related picocyanobacteria with oil-utilizing bacteria in the Arabian gulf water body: promising consortia in oil sediment bioremediation. Microb Ecol. 2013;65:555–65.

    Article  CAS  Google Scholar 

  93. Novotný Č, Svobodová K, Erbanová P, Cajthaml T, Kasinath A, Lang E, et al. Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem. 2004;36:1545–51.

  94. Al-Hawash AB, Dragh MA, Li S, Alhujaily A, Abbood HA, Zhang X, et al. Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt J Aquat Res. 2018;44:71–6.

  95. Messias JM, da Costa BZ, de Lima VM, Dekker RF, Rezende MI, Krieger N, et al. Screening Botryosphaeria species for lipases: production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources. Enzym Microb Technol. 2009;45:426–31.

  96. Singh A, Ward OP. Applied bioremediation and phytoremediation: Springer Science & Business Media; 2004.

  97. Lee H, Yun SY, Jang S, Kim G-H, Kim J-J. Bioremediation of polycyclic aromatic hydrocarbons in creosote-contaminated soil by Peniophora incarnata KUC8836. Bioremediat J. 2015;19:1–8.

    Article  CAS  Google Scholar 

  98. Li X, Wang Y, Wu S, Qiu L, Gu L, Li J, et al. Peculiarities of metabolism of anthracene and pyrene by laccase-producing fungus P ycnoporus sanguineus H 1. Biotechnol Appl Biochem. 2014;61:549–54.

  99. Balaji V, Arulazhagan P, Ebenezer P. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ Biol. 2014;35:521–9.

    CAS  Google Scholar 

  100. Snellman E, Collins R, Cooke J. Utilization of fuel oils by fungi isolated from oceanic tar balls. Lett Appl Microbiol. 1988;6:105–7.

    Article  Google Scholar 

  101. Elshafie A, AlKindi AY, Al-Busaidi S, Bakheit C, Albahry S. Biodegradation of crude oil and n-alkanes by fungi isolated from Oman. Mar Pollut Bull. 2007;54:1692–6.

    Article  CAS  Google Scholar 

  102. Radwan S, Al-Hasan R, Al-Awadhi H, Salamah S, Abdullah H. Higher oil biodegradation potential at the Arabian gulf coast than in the water body. Mar Biol. 1999;135:741–5.

    Article  CAS  Google Scholar 

  103. Radwan S, Al-Hasan R, Mahmoud H, Eliyas M. Oil-utilizing bacteria associated with fish from the Arabian gulf. J Appl Microbiol. 2007;103:2160–7.

    Article  CAS  Google Scholar 

  104. Bull AT, Stach JE, Ward AC, Goodfellow M. Marine actinobacteria: perspectives, challenges, future directions. Antonie Van Leeuwenhoek. 2005;87:65–79.

    Article  Google Scholar 

  105. Austin B. The bacterial microflora of fish, revised. Sci World J. 2006;6:931–45.

    Article  CAS  Google Scholar 

  106. Leys NM, Ryngaert A, Bastiaens L, Wattiau P, Top EM, Verstraete W, et al. Occurrence and community composition of fast-growing Mycobacterium in soils contaminated with polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol. 2005;51:375–88.

    Article  CAS  Google Scholar 

  107. Sorkhoh N, Ghannoum M, Ibrahim A, Stretton R, Radwan S. Growth of Candida albicans in the presence of hydrocarbons: a correlation between sterol concentration and hydrocarbon uptake. Appl Microbiol Biotechnol. 1991;34:509–12.

    Article  CAS  Google Scholar 

  108. Zhang H, Kallimanis A, Koukkou AI, Drainas C. Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol. 2004;65:124–31.

    Article  CAS  Google Scholar 

  109. Al-Dahash LM, Mahmoud HM. Harboring oil-degrading bacteria: a potential mechanism of adaptation and survival in corals inhabiting oil-contaminated reefs. Mar Pollut Bull. 2013;72:364–74.

    Article  CAS  Google Scholar 

  110. Grossart HP. Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environ Microbiol Rep. 2010;2:706–14.

    Article  Google Scholar 

  111. Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T. Marine diatom species harbour distinct bacterial communities. Environ Microbiol. 2005;7:860–73.

    Article  CAS  Google Scholar 

  112. Carman KR, Dobbs FC. Epibiotic microorganisms on copepods and other marine crustaceans. Microsc Res Tech. 1997;37:116–35.

    Article  CAS  Google Scholar 

  113. Bayat Z, Hassanshahian M, Cappello S. Immobilization of microbes for bioremediation of crude oil polluted environments: A mini review. Open Microbiol J. 2015a;9:48–54.

    CAS  Google Scholar 

  114. Bayat Z, Hassanshahian M, Hesni MA. Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf. Mar Pollut Bull. 2015b;101:85–91.

    Article  CAS  Google Scholar 

  115. Bayat Z, Hassanshahian M, Hesni MA. Study the symbiotic crude oil-degrading bacteria in the mussel Mactra stultorum collected from the Persian Gulf. Mar Pollut Bull. 2016;105:120–4.

    Article  CAS  Google Scholar 

  116. Al-Thukair AA, Al-Hinai K. Preliminary damage assessment of algal mats sites located in the western gulf following the 1991 oil spill. Mar Pollut Bull. 1993;27:229–38.

    Article  Google Scholar 

  117. Abed RM, Köster J. The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds. Int Biodeterior Biodegradation. 2005;55:29–37.

    Article  CAS  Google Scholar 

  118. Al-Mailem D, Eliyas M, Radwan S. Enhanced haloarchaeal oil removal in hypersaline environments via organic nitrogen fertilization and illumination. Extremophiles. 2012;16:751–8.

    Article  CAS  Google Scholar 

  119. Prufert-Bebout L, Garcia-Pichel F. Field and cultivated Microcoleus chthonoplastes: the search for clues to its prevalence in marine microbial mats, microbial Mats: Springer; 1994. p. 111–6.

  120. Karsten U. Growth and organic osmolytes of geographically different isolates of microcoleus chthonoplastes (cyanobacteria) from benthic microbial mats: response to salinity change 1. J Phycol. 1996;32:501–6.

    Article  CAS  Google Scholar 

  121. Rainey FA, Nobre MF, Schumann P, Stackebrandt E, DA COSTA MS. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Evol Microbiol. 1997;47:510–4.

    CAS  Google Scholar 

  122. Liu B, Ju M, Liu J, Wu W, Li X. Isolation, identification, and crude oil degradation characteristics of a high-temperature, hydrocarbon-degrading strain. Mar Pollut Bull. 2016;106:301–7.

    Article  CAS  Google Scholar 

  123. Hambrick GA, DeLaune RD, Patrick W. Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Appl Environ Microbiol. 1980;40:365–9.

    Article  CAS  Google Scholar 

  124. Peyton BM, Yonge DR, Alva VA, Oie C, Aston J. Biodegradation of non-point source pollutants in soap Lake, Washington. Pullman: Project completion report state of Washington water research report WRR-11 state of Washington water research center; 2002.

    Google Scholar 

  125. Sarnaik S, Kanekar P. Bioremediation of colour of methyl violet and phenol from a dye-industry waste effluent using Pseudomonas spp. isolated from factory soil. J Appl Bacteriol. 1995;79:459–69.

    Article  CAS  Google Scholar 

  126. Maltseva O, McGowan C, Fulthorpe R, Oriel P. Degradation of 2, 4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology. 1996;142:1115–22.

    Article  CAS  Google Scholar 

  127. Maltseva O, Oriel P. Monitoring of an alkaline 2, 4, 6-Trichlorophenol-degrading enrichment culture by DNA fingerprinting methods and isolation of the responsible organism, Haloalkaliphilic Nocardioides sp. strain M6. Appl Environ Microbiol. 1997;63:4145–9.

    Article  CAS  Google Scholar 

  128. Kanekar P, Sarnaik S, Kelkar A. Bioremediation of phenol by alkaliphilic bacteria isolated from alkaline lake of Lonar, India. J Appl Microbiol. 1998;85:128S–33S.

    Article  Google Scholar 

  129. Yumoto I, Nakamura A, Iwata H, Kojima K, Kusumoto K, Nodasaka Y, et al. Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol. 2002;52:85–90.

  130. Yumoto I, Yamaga S, Sogabe Y, Nodasaka Y, Matsuyama H, Nakajima K, et al. Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol. 2003;53:1531–6.

  131. Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol. 2002;28:56–63.

    Article  CAS  Google Scholar 

  132. Fakhrzadegan I, Hassanshahian M, Askari H, Saadatfar M, A. A study of crude oil-degrading bacteria from mangrove forests in the Persian Gulf. Mar Ecol. 2019;40(2):1–10.

    Article  CAS  Google Scholar 

  133. Lima TM, Procópio LC, Brandão FD, Carvalho AM, Tótola MR, Borges AC. Biodegradability of bacterial surfactants. Biodegradation. 2011;22:585–92.

    Article  CAS  Google Scholar 

  134. Chandankere R, Yao J, Cai M, Masakorala K, Jain A, Choi MM. Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel. 2014;122:140–8.

    Article  CAS  Google Scholar 

  135. Anjum F, Gautam G, Edgard G, Negi S. Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresour Technol. 2016;213:262–9.

    Article  CAS  Google Scholar 

  136. Zhang X, Fan X, Solaiman DK, Ashby RD, Liu Z, Mukhopadhyay S, et al. Inactivation of Escherichia coli O157: H7 in vitro and on the surface of spinach leaves by biobased antimicrobial surfactants. Food Control. 2016;60:158–65.

  137. Bezza FA, Chirwa EMN. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Chemosphere. 2016;144:635–44.

    Article  CAS  Google Scholar 

  138. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. Environmental applications of biosurfactants: recent advances. Int J Mol Sci. 2011;12:633–54.

    Article  CAS  Google Scholar 

  139. Perfumo A, Smyth T, Marchant R, Banat I. Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates, Handbook of hydrocarbon and lipid microbiology; 2010. p. 1501–12.

    Google Scholar 

  140. Tebyanian H, Hassanshahian M, Kariminik A. Hexadecane-degradation by Teskumurella and Stenotrophomonas strains isolated from hydrocarbon contaminated soils. Jundishapur J Microbiol. 2013;6:1S.

    Article  Google Scholar 

  141. Shin KH, Ahn Y, Kim KW. Toxic effect of biosurfactant addition on the biodegradation of phenanthrene. Environ Toxicol Chem. 2005;24:2768–74.

    Article  CAS  Google Scholar 

  142. Diggle SP. Microbial communication and virulence: lessons from evolutionary theory. Microbiology. 2010;156:3503–12.

    Article  CAS  Google Scholar 

  143. Pi Y, Chen B, Bao M, Fan F, Cai Q, Ze L, et al. Microbial degradation of four crude oil by biosurfactant producing strain Rhodococcus sp. Bioresour Technol. 2017;232:263–9.

  144. Najmi Z, Ebrahimipour G, Franzetti A, Banat IM. Investigation of Physicho-chemical properties and characterization of produced biosurfactant by selected indigenous oil-degrading bacterium. Iran J Public Health. 2018;47:1151.

    Google Scholar 

  145. Rambeloarisoa E, Rontani J, Giusti G, Duvnjak Z, Bertrand J. Degradation of crude oil by a mixed population of bacteria isolated from sea-surface foams. Mar Biol. 1984;83:69–81.

    Article  CAS  Google Scholar 

  146. Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol. 2015;46:7–21.

    Article  CAS  Google Scholar 

  147. Hassanshahian M. Isolation and characterization of biosurfactant producing bacteria from Persian gulf (Bushehr provenance). Mar Pollut Bull. 2014b;86:361–6.

  148. Klug M, Markovetz A. Utilization of aliphatic hydrocarbons by micro-organisms. Adv Microb Physiol Elsevier. 1971:1–43.

  149. Meng L, Li H, Bao M, Sun P. Metabolic pathway for a new strain Pseudomonas synxantha LSH-7′: from chemotaxis to uptake of n-hexadecane. Sci Rep. 2017;7:1–13.

    Article  CAS  Google Scholar 

  150. Rehm H, Reiff I. Mechanisms and occurrence of microbial oxidation of long-chain alkanes, reactors and reactions: Springer; 1981. p. 175–215.

  151. Grbić-Galić D, Vogel TM. Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol. 1987;53:254–60.

    Article  Google Scholar 

  152. Grishchenkov V, Townsend R, McDonald T, Autenrieth R, Bonner J, Boronin A. Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochem. 2000;35:889–96.

    Article  CAS  Google Scholar 

  153. Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM. Effect of salinity, temperature, pH and crude oil concentration on biodegradation of crude oil by Pseudomonas aeruginosa. J Biol Environ Sci. 2007;1:51–7.

    Google Scholar 

  154. Pawar RM. The effect of soil pH on bioremediation of polycyclic aromatic hydrocarbons (PAHS). J Bioremediat Biodegrad. 2015;6:291–304.

    Google Scholar 

  155. Hassanshahian M, Yaghoobi MM. Cloning and gene expression of cytochrome P450 gene from Alcanivorax borkumensis bacterium. Int J Adv Biol Biomed Res. 2014c;2(1):76–85.

  156. Zafra G, Absalón AE, Cortés-Espinosa DV. Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Braz J Microbiol. 2015;46:937–41.

    Article  CAS  Google Scholar 

  157. Mineki S, Suzuki K, Iwata K, Nakajima D, Goto S. Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycycl Aromat Compd. 2015;35:120–8.

    Article  CAS  Google Scholar 

  158. Semple KT, Morriss A, Paton GI. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci. 2003;54:809–18.

    Article  CAS  Google Scholar 

  159. Ron EZ, Rosenberg E. Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol. 2014;27:191–4.

    Article  CAS  Google Scholar 

  160. Rahman KS, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat I. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol. 2003;90:159–68.

    Article  CAS  Google Scholar 

  161. Varjani SJ, Upasani VN. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: production, characterization and surface active properties of biosurfactant. Bioresour Technol. 2016a;221:510–6.

    Article  CAS  Google Scholar 

  162. Varjani SJ, Upasani VN. Core flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo-and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour Technol. 2016b;220:175–82.

    Article  CAS  Google Scholar 

  163. Van Beilen JB, Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol. 2007;74:13–21.

    Article  CAS  Google Scholar 

  164. Scheller U, Zimmer T, Becher D, Schauer F, Schunck W-H. Oxygenation cascade in conversion of n-alkanes to α, ω-dioic acids catalyzed by cytochrome P450 52A3. J Biol Chem. 1998;273:32528–34.

    Article  CAS  Google Scholar 

  165. van Beilen JB, Funhoff EG. Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol. 2005;16:308–14.

    Article  CAS  Google Scholar 

  166. Crisafi F, Genovese M, Smedile F, Russo D, Catalfamo M, Yakimov M, et al. Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto gulf (Italy): A comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies. Mar Pollut Bull. 2016;106:119–26.

  167. Chakraborty R, Borglin SE, Dubinsky EA, Andersen GL, Hazen TC. Microbial response to the MC-252 oil and Corexit 9500 in the Gulf of Mexico. Front Microbiol. 2012;3:357.

    Google Scholar 

  168. Hamdan LJ, Fulmer PA. Effects of COREXIT® EC9500A on bacteria from a beach oiled by the Deepwater horizon spill. Aquat Microb Ecol. 2011;63:101–9.

    Article  Google Scholar 

  169. Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, et al. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. PNAS. 2015;112:14900–5.

  170. Zuijdgeest A, Huettel M. Dispersants as used in response to the MC252-spill lead to higher mobility of polycyclic aromatic hydrocarbons in oil-contaminated Gulf of Mexico sand. PLoS One. 2012;7.

  171. DiGregorio S, Ruffini Castglione M, Gentini A, Lorenzi R. Biostimulation of the autochthonous bacterial community and bioaugmentation of selected bacterial strains for the depletion of polycyclic aromatic hydrocarbons in a historically contaminated soil: EGU General Assembly Conference Abstracts; 2015.

  172. Nikolopoulou M, Pasadakis N, Kalogerakis N. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Mar Pollut Bull. 2013;72:165–73.

    Article  CAS  Google Scholar 

  173. Schaum J, Cohen M, Perry S, Artz R, Draxler R, Frithsen JB, et al. Screening level assessment of risks due to dioxin emissions from burning oil from the BP Deepwater horizon Gulf of Mexico spill. Environ Sci Technol. 2010;44:9383–9.

  174. Zheng M, Ahuja M, Bhattacharya D, Clement TP, Hayworth JS, Dhanasekaran M. Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500. Life Sci. 2014;95:108–17.

    Article  CAS  Google Scholar 

  175. Beolchini F, Rocchetti L, Regoli F, Dell’Anno A. Bioremediation of marine sediments contaminated by hydrocarbons: experimental analysis and kinetic modeling. J Hazard Mater. 2010;182:403–7.

    Article  CAS  Google Scholar 

  176. Brodkorb TS, Legge RL. Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Appl Environ Microbiol. 1992;58:3117–21.

    Article  CAS  Google Scholar 

  177. Hii YS, Law AT, Shazili N, Abdul-Rashid M, Lee CW. Biodegradation of Tapis blended crude oil in marine sediment by a consortium of symbiotic bacteria. Int Biodeterior Biodegradation. 2009;63:142–50.

    Article  CAS  Google Scholar 

  178. Mohajeri L, Aziz HA, Isa MH, Zahed MA. A statistical experiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments. Bioresour Technol. 2010;101:893–900.

    Article  CAS  Google Scholar 

  179. Murado MA, Vázquez JA, Rial D, Beiras R. Dose–response modelling with two agents: application to the bioassay of oil and shoreline cleaning agents. J Hazard Mater. 2011;185:807–17.

    Article  CAS  Google Scholar 

  180. Solano-Serena F, Marchal R, Heiss S, Vandecasteele JP. Degradation of isooctane by Mycobacterium austroafricanum IFP 2173: growth and catabolic pathway. J Appl Microbiol. 2004;97:629–39.

    Article  CAS  Google Scholar 

  181. Townsend GT, Prince RC, Suflita JM. Anaerobic biodegradation of alicyclic constituents of gasoline and natural gas condensate by bacteria from an anoxic aquifer. FEMS Microbiol Ecol. 2004;49:129–35.

    Article  CAS  Google Scholar 

  182. Vogel TM. Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol. 1996;7:311–6.

    Article  CAS  Google Scholar 

  183. Wang X-B, Chi C-Q, Nie Y, Tang Y-Q, Tan Y, Wu G, et al. Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain. Bioresour Technol. 2011;102:7755–61.

  184. Wardlaw GD, Nelson RK, Reddy CM, Valentine DL. Biodegradation preference for isomers of alkylated naphthalenes and benzothiophenes in marine sediment contaminated with crude oil. Org Geochem. 2011;42:630–9.

    Article  CAS  Google Scholar 

  185. Bartha R. Biotechnology of petroleum pollutant biodegradation. Microb Ecol. 1986;12:155–72.

    Article  CAS  Google Scholar 

  186. Radwan SS. Gulf oil spill. Nature. 1991;350:456–6.

  187. Radwan S, Sorkhoh N, Fardoun F, Al-Hasan R. Soil management enhancing hydrocarbon biodegradation in the polluted Kuwaiti desert. Appl Microbiol Biotechnol. 1995;44:265–70.

    Article  CAS  Google Scholar 

  188. Zavareh MSH, Ebrahimipour G, Moghadam MS, Fakhari J, Abdoli T. Bioremediation of crude oil using bacterium from the coastal sediments of Kish Island, Iran. Iran J Public Health. 2016;45:670.

    Google Scholar 

  189. Bao M-t, Wang L-n, Sun P-y, Cao L-x, Zou J, Li Y-m. Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Mar Pollut Bull. 2012;64:1177–85.

    Article  CAS  Google Scholar 

  190. Ruberto L, Vazqueza SC, Walter P, Mac C. Effectiveness of the natural bacterial flora, biostimulationand and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int Biodeterior Biodegradation. 2003;52:115–25.

    Article  CAS  Google Scholar 

  191. Maa FB, Jing B, Guo L, Zhao C, Chein-chi C, Di C. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresour Technol. 2009;100:597–602.

    Article  CAS  Google Scholar 

  192. Hassanshahian M, Bayat Z, Cappello S, Smedile F, Yakimov M. Comparison the effects of bioaugmentation versus biostimulation on marine microbial community by PCR-DGGE: A mesocosm scale. J Environ Sci (China). 2016;43:136–46.

    Article  Google Scholar 

  193. Flavia F, Evans S, Rosado GV, Sebasti S, Renata C, Pedro LO, et al. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol Ecol. 2004;49:295–305.

  194. Ruberto LR, Dias A, Balbo SC, Vazquez EA, Mac W. Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil. J Appl Microbiol. 2009;106:1101–10.

    Article  CAS  Google Scholar 

  195. Hassanshahian M, Boroujeni NA. Enrichment and identification of naphthalene-degrading bacteria from the Persian Gulf. Mar Pollut Bull. 2016;107:59–65.

    Article  CAS  Google Scholar 

  196. Abarian M, Hassanshahian M, Esbah A. Degradation of phenol at high concentrations using immobilization of Pseudomonas putida P53 into sawdust entrapped in sodium-alginate beads. Water Sci Technol. 2019;79:1387–96.

    Article  CAS  Google Scholar 

  197. Al-Mailem D, Eliyas M, Radwan S. Bioremediation of oily hypersaline soil and water via potassium and magnesium amendment. Can J Microbiol. 2013;59:837–44.

    Article  CAS  Google Scholar 

  198. Chaprão MJ, Ferreira IN, Correa PF, Rufino RD, Luna JM, Silva EJ, et al. Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron J Biotechnol. 2015;18:471–9.

  199. Chen Q, Bao M, Fan X, Liang S, Sun P. Rhamnolipids enhance marine oil spill bioremediation in laboratory system. Mar Pollut Bull. 2013;71:269–75.

    Article  CAS  Google Scholar 

  200. Garcia-Pichel F, Prufert-Bebout L, Muyzer G. Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol. 1996;62:3284–91.

    Article  CAS  Google Scholar 

  201. Khan NY, Al-Ajmi D. Post-war imperatives for the sustainable management of the Gulf ecosystem. Environ Int. 1998;24:239–48.

    Article  Google Scholar 

  202. Sajna KV, Sukumaran RK, Gottumukkala LD, Pandey A. Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresour Technol. 2015;191:133–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hassanshahian.

Ethics declarations

Conflicted of interest

There is not any conflicted of interest between the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanshahian, M., Amirinejad, N. & Askarinejad Behzadi, M. Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study. J Environ Health Sci Engineer 18, 1415–1435 (2020). https://doi.org/10.1007/s40201-020-00557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00557-x

Keywords

Navigation