Skip to main content
Log in

Protective effects of Labisia pumila against neuropathy in a diabetic rat model

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Diabetes accelerates peripheral, distal symmetric polyneuropathy, small fiber predominant neuropathy, radiculoplexopathy, and autonomic neuropathy. This study investigated the neuroprotective effects of gallic acid and myricetin-rich Labisia pumila extract in a diabetic neuropathy rat model and evaluated the neuropathy correlationship with serum inflammatory biomarkers.

Methods

Thirty male rats were divided into 5 groups (n = 6), namely: healthy control; non-treated diabetic control; and diabetic-rats treated with 200 mg/kg metformin; Labisia pumila ethanol extract (LP) at 150 mg/kg or 300 mg/kg doses. Diabetes was induced by 60 mg streptozotocin /kg intraperitoneal injection. Rats were orally treated daily for ten weeks. Their fasting blood glucose (FBG), neurological functions (hot plate and tail immersion; thermal hyperalgesia; cold allodynia; motor walking function), biomarkers for inflammation and oxidative stress, the neuro-histopathological changes, and brain somatic index were measured.

Results

The extract significantly prevented abnormal increases in FBG and decreases in body weight gain. It attenuated behavioral dysfunctions (hot plate and tail immersion; thermal hyperalgesia; cold allodynia; motor walking function), systemic inflammation (serum TNF-α, prostaglandin-E2) oxidative tension (malondialdehyde), histological brain and sciatic nerve injuries in the diabetic-rats, better than Metformin.

Conclusion

LP mitigated neural dysfunction better than metformin partly by amending diabetic systemic inflammation, oxidative tension, and diabetic abnormalities. The nerve injuries were strongly correlated to serum prostaglandin-E2, TNF-α levels, and walking functions. The motor function was correlated to sensory neuronal functions, inflammation, and oxidation. The sensory neuronal functions were more affected by TNF-α than prostaglandin-E2 or oxidation. Diabetic brain and sciatic nerve deteriorations were influenced by serum TNF-α, PGE2, and MDA levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Available on request.

References

  1. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol. 2012;11:521–34. https://doi.org/10.1016/S1474-4422(12)70065-0.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN. Neuropathic pain, Nat. Rev. Dis. Prim. 3 (2017). https://doi.org/10.1038/nrdp.2017.2.

  3. Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment, World. J Diabetes. 2018;9:1–24. https://doi.org/10.4239/wjd.v9.i1.1.

    Article  Google Scholar 

  4. Babizhayev MA. Biomarkers and special features of oxidative stress in the anterior segment of the eye linked to lens cataract and the trabecular meshwork injury in primary open-angle glaucoma: Challenges of dual combination therapy with N-acetylcarnosine lubricant eye d. Fundam Clin Pharmacol. 2012;26:86–117. https://doi.org/10.1111/j.1472-8206.2011.00969.x.

    Article  CAS  PubMed  Google Scholar 

  5. Purwata TE. High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res. 2011;4:169–75. https://doi.org/10.2147/JPR.S21751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yagihashi S, Mizukami H, Sugimoto K. Mechanism of diabetic neuropathy: Where are we now and where to go? J Diabetes Investig. 2011;2:18–32. https://doi.org/10.1111/j.2040-1124.2010.00070.x.

    Article  CAS  PubMed  Google Scholar 

  7. Chua LS, Lee SY, Abdullah N, Sarmidi MR. Review on Labisia pumila (Kacip Fatimah): Bioactive phytochemicals and skin collagen synthesis promoting herb. Fitoterapia. 2012;83:1322–35. https://doi.org/10.1016/j.fitote.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  8. Hairi HA, Sofi NSM, Khodari SNK, Jamal JA, Mohamed IN, Shuid AN. Therapeutic Effects of Labisia pumila on Estrogen-deficiency related disorders: An evidence based review. Int J Pharmacol. 2016;12:451–60. https://doi.org/10.3923/ijp.2016.451.460.

    Article  Google Scholar 

  9. Mansor F, Gu HF, Östenson C-G, Mannerås-Holm L, Stener-Victorin E, Nazaimoon W, Mohamud W. Labisia pumila Upregulates Peroxisome Proliferator-Activated Receptor Gamma Expression in Rat Adipose Tissues and 3T3-L1 Adipocytes, Adv. Pharmacol. Sci. 2013 (2013). https://doi.org/10.1155/2013/808914.

  10. Madzuki IN, Lau SF, Che Ahmad Tantowi NA, Mohd Ishak NI, Mohamed S. Labisia Pumila prevented osteoarthritis cartilage degeneration by attenuating joint inflammation and collagen breakdown in postmenopausal rat model. Inflammopharmacology. 26 (2018). https://doi.org/10.1007/S10787-018-0452-6.

  11. Nahar N, Mohamed S, Mustapha NM, Lau SF, Ishak NIM, Umran NS. Metformin attenuated histopathological ocular deteriorations in a streptozotocin-induced hyperglycemic rat model. Naunyn Schmiedebergs Arch Pharmacol. 2020. https://doi.org/10.1007/s00210-020-01989-w.

    Article  PubMed  Google Scholar 

  12. Dawane JS, Pandit VA, Bhosale MSK, Khatavkar PS. Evaluation of effect of Nishamalaki on STZ and HFHF diet induced diabetic neuropathy in wistar rats, J. Clin. Diagnostic Res. 10 (2016) FF01–FF05. https://doi.org/10.7860/JCDR/2016/21011.8752.

  13. Jain D, Bansal MK, Dalvi R, Upganlawar A, Somani R. Protective effect of diosmin against diabetic neuropathy in experimental rats. J Integr Med. 2014;12:35–41. https://doi.org/10.1016/S2095-4964(14)60001-7.

    Article  PubMed  Google Scholar 

  14. Kuhad A, Sharma S, Chopra K. Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pain. 2008;12:624–32. https://doi.org/10.1016/j.ejpain.2007.10.008.

    Article  CAS  PubMed  Google Scholar 

  15. Hsu M, Stevenson FF. Wallerian degeneration and recovery of motor nerves after multiple focused cold therapies. Muscle and Nerve. 2015;51:268–75. https://doi.org/10.1002/mus.24306.

  16. Altun S, Özdemir S, Arslan H. Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.), Environ. Pollut. 2017;230:432–43. https://doi.org/10.1016/J.ENVPOL.2017.06.085.

  17. Decroli E, Manaf A, Syahbuddin S, Syafrita Y, Dillasamola D. The correlation between malondialdehyde and nerve growth factor serum level with diabetic peripheral neuropathy score, Open Access Maced. J Med Sci. 2019;7:103–6. https://doi.org/10.3889/oamjms.2019.029.

    Article  Google Scholar 

  18. Altun S, Özdemir S, Arslan H. Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.), Environ. Pollut. 230 (2017) 432–443. https://doi.org/10.1016/j.envpol.2017.06.085.

  19. Im A-R, Kim Y-H, Uddin MR, Chae S, Lee HW, Kim YS, Lee MY. Neuroprotective effects of Lycium chinense miller against rotenone-induced neurotoxicity in PC12 cells. Am J Chin Med. 2013;41:1343–59. https://doi.org/10.1142/S0192415X13500900.

    Article  CAS  PubMed  Google Scholar 

  20. Vincent AM, Callaghan BC, Smith AL, Feldman EL. Diabetic neuropathy: Cellular mechanisms as therapeutic targets, Nat. Rev. Neurol. 2011;7:573–83. https://doi.org/10.1038/nrneurol.2011.137

  21. Coppey LJ, Davidson EP, Rinehart TW, Gellett JS, Oltman CL, Lund DD, Yorek MA. ACE inhibitor or angiotensin II receptor antagonist attenuates diabetic neuropathy in streptozotocin-induced diabetic rats. Diabetes. 2006;55:341–8. https://doi.org/10.2337/diabetes.55.02.06.db05-0885.

    Article  CAS  PubMed  Google Scholar 

  22. Laedermann CJ, Abriel H, Decosterd I. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes, Front. Pharmacol. 6 (2015). https://doi.org/10.3389/fphar.2015.00263.

  23. Kontogiorgis CA, Bompou EM, Ntella M, Vanden Berghe W. Natural products from Mediterranean Diet: From anti-inflammatory agents to dietary epigenetic modulators, Am. J. Community Psychol. 48 (2011) 101–124.

  24. Gholamzadeh S, Zarenezhad M, Montazeri M, Zareikordshooli M, Sadeghi G, Malekpour A, Hoseni S, Bahrani M, Hajatmand R. Statistical analysis of organ morphometric parameters and weights in South Iranian Adult Autopsies, Med. (United States). 96 (2017). https://doi.org/10.1097/MD.0000000000006447.

  25. Wang JQ, Yin J, Song YF, Zhang L, Ren YX, Wang DG, Gao LP, Jing YH. Brain aging and AD-like pathology in streptozotocin-induced diabetic rats, J. Diabetes Res. 2014 (2014). https://doi.org/10.1155/2014/796840.

  26. Niyomchan A, Sricharoenvej S, Lanlua P, Baimai S. Cerebellar synaptopathy in streptozotocin-induced diabetic rats. Int J Morphol. 2019;37:28–35. https://doi.org/10.4067/S0717-95022019000100028.

    Article  Google Scholar 

  27. Østergaard L, Finnerup NB, Terkelsen AJ, Olesen RA, Drasbek KR, Knudsen L, Jespersen SN, Frystyk J, Charles M, Thomsen RW, Christiansen JS, Beck-Nielsen H, Jensen TS, Andersen H. The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy. Diabetologia. 2015;58:666–77.

    Article  Google Scholar 

  28. Rajchgot T, Thomas SC, Wang JC, Ahmadi M, Balood M, Crosson T, Dias JP, Couture R, Claing A, Talbot S. Neurons and microglia; a sickly-sweet duo in diabetic pain neuropathy, Front. Neurosci. 24 2019/Dr Lau CE Quest. Exam/Curcumin Attenuates Therm. Hyperalgesia a Diabet. Mouse Model of.Pdf. 13 (2019) 1–17. https://doi.org/10.3389/fnins.2019.00025.

Download references

Funding

From Universiti Putra Research grant [grant number 9578200].

Author information

Authors and Affiliations

Authors

Contributions

Nazmun Nahar (planning, execution, data collection, and manuscript preparation), Seng Fong Lau and Noordin Mohamed Mustapha (attending veterinary clinician for animal studies), and Suhaila Mohamed (grant recipient, main supervisor, project planning coordinator, and manuscript writing/editing, principal researcher). All researchers approved the final manuscript.

Corresponding author

Correspondence to Suhaila Mohamed.

Ethics declarations

Conflicts of Interest

Nazmun Nahar, Seng Fong Lau, Noordin M. Mustapha, and Suhaila Mohamed have no conflict of interest to declare.

Ethics approval

Institutional Animal Care and Use Committee registration number: (UPM/IACUC/AUP-R095/2017).

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahar, N., Mohamed, S., Mustapha, N.M. et al. Protective effects of Labisia pumila against neuropathy in a diabetic rat model. J Diabetes Metab Disord 21, 1–11 (2022). https://doi.org/10.1007/s40200-021-00905-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00905-0

Keywords

Navigation