Skip to main content
Log in

Investigation of the effects of maternal separation on the pancreatic oxidative and inflammatory damages along with metabolic impairment in response to chronic social defeat stress in young adult male rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Chronic glucocorticoid release during the stress response has been proposed to initiate certain damages, which in turn produce metabolic disorders. The present study is the first work to test whether maternal separation (MS) would impact the metabolic alterations associated with pancreatic oxidative and inflammatory damages under chronic exposure to social defeat stress (CSDS) in adulthood.

Methods

During the first 2 weeks of life, male Wistar rats were exposed to MS or left undisturbed with their mothers (Std). Starting on postnatal day 50, the animals of each group were either left undisturbed in the standard group housing (Con) or underwent CSDS for 3 weeks. Thus, there were 4 groups (n = 7/group): Std-Con, Ms-Con, Std-CSDS, MS-CSDS. Each animal was weighed and then decapitated so that we could collect trunk blood for assessment of fasting plasma corticosterone, insulin, glucose, lipid profile, and insulin resistance. Plasma and pancreatic catalase activity, reduced glutathione (GSH), malondialdehyde levels and pancreatic interleukin-1 beta (IL-1β) content were also measured.

Results

MS-CSDS animals showed elevated plasma corticosterone and insulin levels (P < 0.01) along with insulin resistance (P < 0.05). According to one-way ANOVA results, chronic exposure to early or adult life adversity decreased body weight (P < 0.0001), Catalase activity and GSH levels (P < 0.0001) and increased malondialdehyde level (P = 0.0006) in plasma. Pancreatic MDA and IL-1β contents elevated just in MS-CSDS rats (P < 0.05).

Conclusion

Maternal separation shapes vulnerability to develop corticosterone hypersecretion, insulin resistance, pancreatic oxidative, and inflammatory damages associated with chronic exposure to later social challenges, which could potentially trigger metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coccurello R, D’Amato FR, Moles A. Chronic social stress, hedonism and vulnerability to obesity: lessons from rodents. Neurosci Biobehav Rev. 2009;33(4):537–50.

    PubMed  Google Scholar 

  2. Heim C, Binder EB. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene–environment interactions, and epigenetics. Exp Neurol. 2012;233(1):102–11.

    PubMed  Google Scholar 

  3. Champagne DL, Ronald de Kloet E, Joëls M. Fundamental aspects of the impact of glucocorticoids on the (immature) brain. Semin Fetal Neonatal Med. 2009;14(3):136–42.

    PubMed  Google Scholar 

  4. Franklin TB, Saab BJ, Mansuy IM. Neural mechanisms of stress resilience and vulnerability. Neuron. 2012;75(5):747–61. https://doi.org/10.1016/j.neuron.2012.08.016.

    Article  CAS  PubMed  Google Scholar 

  5. Rosmond R. Role of stress in the pathogenesis of the metabolic syndrome. Psychoneuroendocrinology. 2005;30(1):1–10.

    CAS  PubMed  Google Scholar 

  6. Krishnan V, Han M-H, Graham DL, Berton O, Renthal W, Russo SJ, LaPlant Q, Graham A, Lutter M, Lagace DC, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell. 2007;131(2):391–404.

    CAS  PubMed  Google Scholar 

  7. Teague CR, Dhabhar FS, Barton RH, Beckwith-Hall B, Powell J, Cobain M, Singer B, McEwen BS, Lindon JC, Nicholson JK, et al. Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague–Dawley rats. J Proteome Res. 2007;6(6):2080–93.

    CAS  PubMed  Google Scholar 

  8. McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav. 2003;43(1):2–15.

    PubMed  Google Scholar 

  9. Spiers JG, Chen H-JC, Sernia C, Lavidis NA. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci. 2015;8:456.

    PubMed  PubMed Central  Google Scholar 

  10. Roldan M, Rose AJ, Herzig S. Glucocorticoid hormones and energy homeostasis. Horm Mol Biol Clin Investig. 2014;19(2):117–28.

    Google Scholar 

  11. Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of oxidative stress and impaired biogenesis of pancreatic β-cells to type 2 diabetes. Antioxidants Redox Signal. 2019;31(10):722–51.

    Google Scholar 

  12. Keane KN, Cruzat VF, Carlessi R, De Bittencourt PIH, Newsholme P. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid Med Cell Longev. 2015;2015:181643.

    PubMed  PubMed Central  Google Scholar 

  13. Newsholme P, Rebelato E, Abdulkader F, Krause M, Carpinelli A, Curi R. Reactive oxygen and nitrogen species generation, antioxidant defenses, and β-cell function: a critical role for amino acids. J Endocrinol. 2012;214(1):11–20.

    CAS  PubMed  Google Scholar 

  14. Gehrmann W, Elsner M, Lenzen S. Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells. Diabetes Obes Metab. 2010;12:149–58.

    CAS  PubMed  Google Scholar 

  15. Siddiqui A, Desai NG, Sharma SB, Aslam M, Sinha UK, Madhu SV. Association of oxidative stress and inflammatory markers with chronic stress in patients with newly diagnosed type 2 diabetes. Diabetes Metab Res Rev. 2019;35(5):e3147.

    PubMed  Google Scholar 

  16. Azevedo-Martins AK, Lortz S, Lenzen S, Curi R, Eizirik DL, Tiedge M. Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-κB activation in insulin-producing cells. Diabetes. 2003;52(1):93–101.

    CAS  PubMed  Google Scholar 

  17. Cnop M, Abdulkarim B, Bottu G, Cunha DA, Igoillo-Esteve M, Masini M, Turatsinze J-V, Griebel T, Villate O, Santin I, et al. RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes. 2014;63(6):1978–93.

    CAS  PubMed  Google Scholar 

  18. Berchtold LA, Prause M, Størling J, Mandrup-Poulsen T. Cytokines and pancreatic β-cell apoptosis. Adv Clin Chem. 2016;75:99–158.

    CAS  PubMed  Google Scholar 

  19. Iio W, Matsukawa N, Tsukahara T, Kohari D, Toyoda A. Effects of chronic social defeat stress on MAP kinase cascade. Neurosci Lett. 2011;504(3):281–4.

    CAS  PubMed  Google Scholar 

  20. Ghasemi A, Tohidi M, Derakhshan A, Hasheminia M, Azizi F, Hadaegh F. Cut-off points of homeostasis model assessment of insulin resistance, beta-cell function, and fasting serum insulin to identify future type 2 diabetes: Tehran Lipid and Glucose Study. Acta Diabetol. 2015;52(5):905–15.

    CAS  PubMed  Google Scholar 

  21. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.

    CAS  PubMed  Google Scholar 

  22. Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim acta. 1991;196(2–3):143–51.

    CAS  PubMed  Google Scholar 

  23. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.

    CAS  PubMed  Google Scholar 

  24. Kamper EF, Chatzigeorgiou A, Tsimpoukidi O, Kamper M, Dalla C, Pitychoutis PM, Papadopoulou-Daifoti Z. Sex differences in oxidant/antioxidant balance under a chronic mild stress regime. Physiol Behav. 2009;98(1–2):215–22.

    CAS  PubMed  Google Scholar 

  25. Vargas J, Junco M, Gomez C, Lajud N. Early life stress increases metabolic risk, HPA axis reactivity, and depressive-like behavior when combined with postweaning social isolation in rats. PLoS ONE. 2016;11(9):e0162665. https://doi.org/10.1371/journal.pone.0162665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB, Plotsky PM. Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo-pituitary-adrenal axis following neonatal maternal separation. Biol Psychiatry. 2004;55(4):367–75.

    CAS  PubMed  Google Scholar 

  27. Cotella EM, Mestres Lascano I, Franchioni L, Levin GM, Suárez MM. Long-term effects of maternal separation on chronic stress response suppressed by amitriptyline treatment. Stress. 2013;16(4):477–81.

    CAS  PubMed  Google Scholar 

  28. Ladd CO, Thrivikraman KV, Huot RL, Plotsky PM. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates. Psychoneuroendocrinology. 2005;30(6):520–33.

    CAS  PubMed  Google Scholar 

  29. Sanchez MM, Ladd CO, Plotsky PM. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev Psychopathol. 2001;13(3):419–49.

    CAS  PubMed  Google Scholar 

  30. Liu D, Caldji C, Sharma S, Plotsky PM, Meaney MJ. Influence of neonatal rearing conditions on stress-induced adrenocorticotropin responses and norepinepherine release in the hypothalamic paraventricular nucleus. J Neuroendocrinol. 2000;12(1):5–12.

    PubMed  Google Scholar 

  31. Ladd CO, Huot RL, Thrivikraman KV, Nemeroff CB. Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res. 1998;122(3):2000.

    Google Scholar 

  32. Caldji C, Francis D, Sharma S, Plotsky PM, Meaney MJ. The effects of early rearing environment on the development of GABA A and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology. 2000;22(3):219–29.

    CAS  PubMed  Google Scholar 

  33. Buwalda B, Kole MHP, Veenema AH, Huininga M, de Boer SF, Korte SM, Koolhaas JM. Long-term effects of social stress on brain and behavior: a focus on hippocampal functioning. Neurosci Biobehav Rev. 2005;29(1):83–97.

    PubMed  Google Scholar 

  34. Tamashiro KLK, Hegeman MA, Nguyen MMN, Melhorn SJ, Ma LY, Woods SC, Sakai RR. Dynamic body weight and body composition changes in response to subordination stress. Physiol Behav. 2007;91(4):440–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zardooz H, Asl SZ, Naseri MG. Effect of chronic psychological stress on insulin release from rat isolated pancreatic islets. Life Sci. 2006;79(1):57–62.

    CAS  PubMed  Google Scholar 

  36. Rabasa C, Dickson SL. Impact of stress on metabolism and energy balance. Curr Opin Behav Sci. 2016;9:71–7.

    Google Scholar 

  37. Rosmond R, Dallman MF, Björntorp P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab. 1998;83(6):1853–9.

    CAS  PubMed  Google Scholar 

  38. de Oliveira C, Scarabelot VL, de Souza A, de Oliveira CM, Medeiros LF, de Macedo IC, Marques Filho PR, Cioato SG, Caumo W, Torres ILS. Obesity and chronic stress are able to desynchronize the temporal pattern of serum levels of leptin and triglycerides. Peptides. 2014;51:46–53.

    PubMed  Google Scholar 

  39. Ricart-Jan D, Rodr V, Benavides A, Peinado-Onsurbe J, Llobera M, et al. Immobilization stress alters intermediate metabolism and circulating lipoproteins in the rat. Metab Exp. 2002;51(7):925–31.

    Google Scholar 

  40. Solin AV, Korozin VI, Lyashev YD. Effects of regulatory peptides on the stress-induced changes of lipid metabolism in experimental animals. Bull Exp Biol Med. 2013;155(3):324–6.

    CAS  PubMed  Google Scholar 

  41. Colaianna M, Schiavone S, Zotti M, Tucci P, Morgese MG, Bäckdahl L, Holmdahl R, Krause K-H, Cuomo V, Trabace L. Neuroendocrine profile in a rat model of psychosocial stress: relation to oxidative stress. Antioxid Redox Signal. 2013;18(12):1385–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lesgards J-F, Durand P, Lassarre M, Stocker P, Lesgards G, Lanteaume A, Prost M, Lehucher-Michel M-P. Assessment of lifestyle effects on the overall antioxidant capacity of healthy subjects. Environ Health Perspect. 2002;110(5):479–86.

    PubMed  PubMed Central  Google Scholar 

  43. Nakhaee A, Shahabizadeh F, Erfani M. Protein and lipid oxidative damage in healthy students during and after exam stress. Physiol Behav. 2013;118:118–21.

    CAS  PubMed  Google Scholar 

  44. Kasahara E, Inoue M. Cross-talk between HPA-axis-increased glucocorticoids and mitochondrial stress determines immune responses and clinical manifestations of patients with sepsis. Redox Rep. 2015;20(1):1–10.

    CAS  PubMed  Google Scholar 

  45. Black ACN, Bot M, Scheffer G, Penninx B. The association between three major physiological stress systems and oxidative DNA and lipid damage. Psychoneuroendocrinology. 2017. https://doi.org/10.1016/j.psyneuen.2017.03.003.

    Article  PubMed  Google Scholar 

  46. Danson EJF, Paterson DJ. Reactive oxygen species and autonomic regulation of cardiac excitability. J Cardiovasc Electrophysiol. 2006;17:S104–12.

    PubMed  Google Scholar 

  47. Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev. 2016;2016:5698931.

    PubMed  PubMed Central  Google Scholar 

  48. Giorgino F, Almahfouz A, Goodyear LJ, Smith RJ, et al. Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo. J Clin Invest. 1993;91(5):2020–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dimitriadis G, Leighton B, Parry-Billings M, Sasson S, Young M, Krause U, Bevan S, Piva T, Wegener G, Newsholme EA. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle. Biochem J. 1997;321(3):707–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Piroli GG, Grillo CA, Reznikov LR, Adams S, McEwen BS, Charron MJ, Reagan LP. Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. Neuroendocrinology. 2007;85(2):71–80.

    CAS  PubMed  Google Scholar 

  51. Esser N, Utzschneider KM, Kahn SE. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia. 2020;63(10):2007–21.

    PubMed  Google Scholar 

  52. Cnop M, Vidal J, Hull RL, Utzschneider KM, Carr DB, Schraw T, Scherer PE, Boyko EJ, Fujimoto WY, Kahn SE. Progressive loss of β-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes. Diabetes Care. 2007;30(3):677–82.

    CAS  PubMed  Google Scholar 

  53. López-López AL, Jaime HB, Villanueva MCE, Padilla MB, Palacios GV, Aguilar FJA. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats. Physiol Behav. 2016;161:15–23.

    PubMed  Google Scholar 

  54. Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hori M. Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes. 1999;48(12):2398–406.

    CAS  PubMed  Google Scholar 

  55. Sokolova M, Sahraoui A, Høyem M, Øgaard J, Lien E, Aukrust P, Yndestad A, Ranheim T, Scholz H. Nlrp3 inflammasome mediates oxidative stress-induced pancreatic islet dysfunction. Am J Physiol Endocrinol Metab. 2018;315(5):E912–23.

    CAS  PubMed  Google Scholar 

  56. Hu C, Ding H, Li Y, Pearson JA, Zhang X, Flavell RA, Wong FS, Wen L. NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets. Proc Natl Acad Sci USA. 2015;112(36):11318–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ralston JC, Lyons CL, Kennedy EB, Kirwan AM, Roche HM. Fatty acids and NLRP3 inflammasome-mediated inflammation in metabolic tissues. Annu Rev Nutr. 2017;37:77–102.

    CAS  PubMed  Google Scholar 

  58. Youm Y-H, Adijiang A, Vandanmagsar B, Burk D, Ravussin A, Dixit VD. Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology. 2011;152(11):4039–45.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported financially by the Student Research Committee, Shahid Beheshti University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homeira Zardooz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, F., Salimi, M., Khodagholi, F. et al. Investigation of the effects of maternal separation on the pancreatic oxidative and inflammatory damages along with metabolic impairment in response to chronic social defeat stress in young adult male rats. J Diabetes Metab Disord 20, 1557–1565 (2021). https://doi.org/10.1007/s40200-021-00902-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00902-3

Keywords

Navigation