Skip to main content

Advertisement

Log in

Role of mitochondria in pathogenesis of type 2 diabetes mellitus

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is global health problem. An estimated 425 million people in the world had diabetes in 2017. It is a major cause of morbidity and mortality worldwide. Although, pathogenesis of T2DM and its complications have been focus of medical research for long, much remains to be learned. A better understanding of molecular pathogenesis is essential for more effective preventive and therapeutic interventions. Role of mitochondria in pathogenesis of metabolic problems such as obesity, metabolic syndrome, and T2DM is the focus of many recent research studies. Mitochondrial dysfunction contributes to the oxidative stress and systemic inflammation leading to insulin resistance (IR). Mitochondria are also essential for pancreatic beta cell insulin secretion. Hence, mitochondria are important players in the pathogenesis of T2DM. In this article, pathogenesis of T2DM is examined from a mitochondrial perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Walsh CT, Tu BP, Tang Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem Rev. 2018;118:1460–94.

    CAS  PubMed  Google Scholar 

  2. Sun F, Zhou Q, Pang X, Xu Y, Rao Z. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain. Curr Opin Struct Biol. 2013;23:526–38.

    CAS  PubMed  Google Scholar 

  3. Maechler P, Li N, Casimir M, Vetterli L, Frigerio F, Brun T. Role of mitochondria in beta-cell function and dysfunction. Adv Exp Med Biol. 2010;654:193–216.

    CAS  PubMed  Google Scholar 

  4. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.

    CAS  PubMed  Google Scholar 

  5. Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114:524–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pastor N, Weinstein H, Jamison E, Brenowitz M. A detailed interpretation of OH radical footprints in a TBP-DNA complex reveals the role of dynamics in the mechanism of sequence-specific binding. J Mol Biol. 2000;304:55–68.

    CAS  PubMed  Google Scholar 

  7. Lipinski B. Hydroxyl radical and its scavengers in health and disease. Oxidative Med Cell Longev. 2011;2011:809696.

    Google Scholar 

  8. Kanaan GN, Harper ME. Cellular redox dysfunction in the development of cardiovascular diseases. Biochim Biophys Acta Gen Subj. 1861;2017:2822–9.

    Google Scholar 

  9. Betteridge DJ. What is oxidative stress? Metabolism. 2000;49:3–8.

    CAS  PubMed  Google Scholar 

  10. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5:a008656.

    PubMed  PubMed Central  Google Scholar 

  11. Parsons MJ, Green DR. Mitochondria in cell death. Essays Biochem. 2010;47:99–114.

    CAS  PubMed  Google Scholar 

  12. Lopez J, Tait SW. Mitochondrial apoptosis: killing cancer using the enemy within. Br J Cancer. 2015;112:957–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gulbins E, Dreschers S, Bock J. Role of mitochondria in apoptosis. Exp Physiol. 2003;88:85–90.

    CAS  PubMed  Google Scholar 

  14. Armstrong JA, Cash NJ, Ouyang Y, Morton JC, Chvanov M, Latawiec D, et al. Oxidative stress alters mitochondrial bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an apoptosis-to-necrosis shift. J Biol Chem. 2018;293:8032–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferguson KM, Hu C, Lemmon MA. Insulin and epidermal growth factor receptor family members share parallel activation mechanisms. Protein Sci. 2020;29:1331–44.

    CAS  PubMed  Google Scholar 

  16. Kaburagi Y, Yamauchi T, Yamamoto-Honda R, et al. The mechanism of insulin-induced signal transduction mediated by the insulin receptor substrate family. Endocr J. 1999;46(Suppl):S25–34.

    CAS  PubMed  Google Scholar 

  17. Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13:195–203.

    CAS  PubMed  Google Scholar 

  18. Paez J, Sellers WR. PI3K/PTEN/Akt pathway. In: Frank DA, editor. Signal transduction in Cancer. Cancer treatment and research, vol. 115. Boston: Springer; 2004.

    Google Scholar 

  19. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:a009191.

    PubMed  PubMed Central  Google Scholar 

  20. Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O'Callaghan N, Lionetti L, et al. Mitochondrial (Dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol. 2019;10:532.

    PubMed  PubMed Central  Google Scholar 

  21. Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nat Med. 2010;16:400–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in hepatic insulin resistance. Trends Pharmacol Sci. 2017;38:649–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene. 2002;286:135–41.

    CAS  PubMed  Google Scholar 

  24. Hurrle S, Hsu WH. The etiology of oxidative stress in insulin resistance. Biom J. 2017;40:257–62.

    Google Scholar 

  25. Mailloux RJ. An Update on Mitochondrial Reactive Oxygen Species Production. Antioxidants (Basel). 2020;9:E472.

    Google Scholar 

  26. Galloway CA, Lee H, Nejjar S, Jhun BS, Yu T, Hsu W, et al. Transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress. Diabetes. 2012;61:2093–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol. 2017;11:637–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1and NRF1. Proc Natl Acad Sci U S A. 2003;100:8466–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Burkart AM, Tan K, Warren L, Iovino S, Hughes KJ, Kahn CR, et al. Insulin resistance in human iPS cells reduces mitochondrial size and function. Sci Rep. 2016;6:22788.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma ZA, Zhao Z, Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp Diabetes Res. 2012;703538.

  31. Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG, et al. The pathogenetic role of β-cell mitochondria in type 2 diabetes. J Endocrinol. 2018;236:R145–59.

    CAS  PubMed  Google Scholar 

  32. Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013;9:25–53.

    PubMed  PubMed Central  Google Scholar 

  33. Brun T, Maechler P. Beta-cell mitochondrial carriers and the diabetogenic stress response. Biochim Biophys Acta. 1863;2016:2540–9.

    Google Scholar 

  34. Kaufman BA, Li C, Soleimanpour SA. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Mol Asp Med. 2015;42:91–104.

    CAS  Google Scholar 

  35. Islam MS. Stimulus-secretion coupling in Beta-cells: from basic to bedside. Adv Exp Med Biol. 2020;1131:943–63.

    CAS  PubMed  Google Scholar 

  36. MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA. Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab. 2005;288:E1–15.

    CAS  PubMed  Google Scholar 

  37. Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T, et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in β cells. J Biol Chem. 1997;272:18572–9.

    CAS  PubMed  Google Scholar 

  38. Olsson AH, Yang BT, Hall E, Taneera J, Salehi A, Dekker Nitert M, et al. Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur J Endocrinol. 2011;165:589–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010;1797:113–28.

    CAS  PubMed  Google Scholar 

  40. El-Hattab AW, Almannai M, Scaglia F. MELAS. 2001 Feb 27 [updated 2018 Nov 29]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [internet]. Seattle: University of Washington, Seattle; 1993-2020.

  41. Robinson KN, Terrazas S, Giordano-Mooga S, Xavier NA. The role of heteroplasmy in the diagnosis and management of maternally inherited diabetes and defaness. Endocr Pract. 2020;26:241–6.

    PubMed  Google Scholar 

  42. McMillan RP, Stewart S, Budnick JA, et al. Quantitative variation in m.3243A > G mutation produce discrete changes in energy metabolism. Sci Rep. 2019;9:5752.

    PubMed  PubMed Central  Google Scholar 

  43. Karaa A, Goldstein A. The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr Diabetes. 2015;16:1–9.

    PubMed  Google Scholar 

  44. Maassen JA, 'T Hart LM, Van Essen E, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes 2004; 53 Suppl 1:S103-S109.

    PubMed  Google Scholar 

  45. Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies [published online ahead of print, 2020 Apr 4]. Front Med. 2020;14:583–600. https://doi.org/10.1007/s11684-019-0729-1.

    Article  PubMed  Google Scholar 

  46. Archer SL. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369:2236–51.

    CAS  PubMed  Google Scholar 

  47. Hasnain SZ, Prins JB, McGuckin MA. Oxidative and endoplasmic reticulum stress in β-cell dysfunction in diabetes. J Mol Endocrinol. 2016;56:R33–54.

    CAS  PubMed  Google Scholar 

  48. Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annu Rev Biochem. 2012;81:767–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fujii J, Homma T, Kobayashi S, Seo HG. Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease. World J Biol Chem. 2018;9:1–15.

    PubMed  PubMed Central  Google Scholar 

  50. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21:396–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ly LD, Xu S, Choi SK, Ha CM, Thoudam T, Cha SK, et al. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp Mol Med. 2017;49:e291.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Momeni HR. Role of calpain in apoptosis. Cell J. 2011;13:65–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Burgos-Morón E, Abad-Jiménez Z, Marañón AM, Iannantuoni F, Escribano-López I, López-Domènech S, et al. Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: the Battle continues. J Clin Med. 2019;8:1385.

    PubMed Central  Google Scholar 

Download references

Funding

Dr. Pankaj Prasun does not have any funding sources to declare related to the study and to the article preparation.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Pankaj Prasun drafted the initial and all subsequent versions of the manuscript and has approved the article as it is written.

Corresponding author

Correspondence to Pankaj Prasun.

Ethics declarations

Declaration of conflicting interests

Dr. Pankaj Prasun has no potential conflicting or competing interests that could in any way affect the conduct of the study, interpretation of results, or preparation of the manuscript.

This review does not require ethics committee approval at this institution.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasun, P. Role of mitochondria in pathogenesis of type 2 diabetes mellitus. J Diabetes Metab Disord 19, 2017–2022 (2020). https://doi.org/10.1007/s40200-020-00679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00679-x

Keywords

Navigation