Skip to main content

Advertisement

Log in

Dapsone improves the vincristine-induced neuropathic nociception by modulating neuroinflammation and oxidative stress

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Peripheral neuropathy is a dose-limiting adverse effect of vincristine (VCR) in cancer chemotherapies. Dapsone is commonly used for the prevention of opportunistic infections following cancer therapies. Therefore, a high rate of VCR and dapsone co-administration has occurred in leukemias. Recently neuroprotective effects of dapsone have been reported in various diseases.

Objectives

Regarding the physiopathology of VCR-induced peripheral neuropathy (VIPN) and dapsone neuroprotection, this study evaluated the effect of dapsone on VIPN.

Methods

VIPN was induced by VCR injection (0.5 mg/kg IP, every other day, 1 week) in male Wistar rats. In the treatment group, dapsone(12.5 mg/kg IP, 1 week) was injected 30 min before VCR. Hot plate, Von Frey, motor neuron conduction velocity (MNCV), and histopathological tests were applied. The levels of TNF-α and NF-kB in the sciatic nerve and caspase-3 activity in dorsal root ganglion were measured by the ELISA method. The levels of malondialdehyde (MDA) and Glutathione (GSH) in the sciatic nerve were measured by spectrophotometry and colorimetric assays.

Results

VIPN was observed as araised thermal and mechanical threshold, reduced MNCV, and sciatic nerve demyelination. However, dapsone reduced the mechanical and thermal threshold and improved the MNCV. Also, dapsone reduced TNF-α, NF-kB, MDA, and Caspase-3 activity, and increased the GSH level in the sciatic nerve. Moreover, dapsone prevented VCR-induced demyelination in the sciatic nerve.

Conclusion

This research demonstrated that dapsone could be used as a protective drug against VIPN. It improves the impaired thermal and mechanical sensations by reducing inflammatory, oxidant, and apoptosis factors and preventing demyelination in the sciatic nerve.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data details will be available upon request.

References

  1. Mora E, et al. Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am J Cancer Res. 2016;6(11):2416.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Williams S, et al. Methemoglobinemia in children with acute lymphoblastic leukemia (ALL) receiving dapsone for pneumocystis carinii pneumonia (PCP) prophylaxis: a correlation with cytochrome b5 reductase (Cb5R) enzyme levels. Pediatr Blood Cancer. 2005;44(1):55–62.

    Article  PubMed  Google Scholar 

  3. Li S, et al. The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Sci Rep. 2015;5(1):1–13.

    Google Scholar 

  4. Starobova H, et al. Minocycline prevents the development of mechanical allodynia in mouse models of vincristine induced peripheral neuropathy. Front Neurosci. 2019;13:653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Authier N, et al. Pain related behaviour during vincristine-induced neuropathy in rats. NeuroReport. 1999;10(5):965–8.

    Article  CAS  PubMed  Google Scholar 

  6. Boehmerle W, et al. Electrophysiological, behavioral and histological characterization of paclitaxel, cisplatin, vincristine and bortezomib-induced neuropathy in C57Bl/6 mice. Sci Rep. 2014;4:6370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fukuda Y, Li Y, Segal RA. A mechanistic understanding of axon degeneration in chemotherapy-induced peripheral neuropathy. Front Neurosci. 2017;11:481.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Soliman A, et al. Study of the possible synergistic protective effects of Melatonin and Pregabalin in Vincristine induced peripheral neuropathy Wistar Albino rats. Life Sci. 2020;244:117095.

    Article  CAS  PubMed  Google Scholar 

  9. Khalilzadeh M, et al. The protective effects of sumatriptan on vincristine-induced peripheral neuropathy in a rat model. Neurotoxicology. 2018;67:279–86.

    Article  CAS  PubMed  Google Scholar 

  10. Starobova H, Vetter I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci. 2017;10:174.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang N, et al. Protective effect of dapsone on cognitive impairment induced by propofol involves hippocampal autophagy. Neurosci Lett. 2017;649:85–92.

    Article  CAS  PubMed  Google Scholar 

  12. Ríos C, et al. Anti-apoptotic effects of dapsone after spinal cord injury in rats. Neurochem Res. 2015;40(6):1243–51.

    Article  PubMed  Google Scholar 

  13. Diaz-Ruiz A, et al. Antioxidant, anticonvulsive and neuroprotective effects of dapsone and phenobarbital against kainic acid-induced damage in rats. Neurochem Res. 2013;38(9):1819–27.

    Article  CAS  PubMed  Google Scholar 

  14. Dejban P, et al. Beneficial effects of dapsone on ischemia/reperfusion injury following torsion/detorsion in ipsilateral and contralateral testes in rat. Theriogenology. 2019;140:136–42.

    Article  CAS  PubMed  Google Scholar 

  15. Rashidian A, et al. Dapsone reduced acetic acid-induced inflammatory response in rat colon tissue through inhibition of NF-kB signaling pathway. Immunopharmacol Immunotoxicol. 2019;41(6):607–13.

    Article  CAS  PubMed  Google Scholar 

  16. Barzegar-Fallah A, et al. The neuroprotective effect of tropisetron on vincristine-induced neurotoxicity. Neurotoxicology. 2014;41:1–8.

    Article  CAS  PubMed  Google Scholar 

  17. Vera G, et al. Involvement of cannabinoid signaling in vincristine-induced gastrointestinal dysmotility in the rat. Front Pharmacol. 2017;8:37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ríos C, et al. Efficacy of dapsone administered alone or in combination with diazepam to inhibit status epilepticus in rats. Brain Res. 2019;1708:181–7.

    Article  PubMed  Google Scholar 

  19. Helton DR, et al. Pharmacokinetic profiles in rats after intravenous, oral, or dermal administration of dapsone. Drug Metab Dispos. 2000;28(8):925–9.

    CAS  PubMed  Google Scholar 

  20. Zuidema J, Hilbers-Modderman E, Merkus F. Clinical pharmacokinetics of dapsone. Clin Pharmacokinet. 1986;11(4):299–315.

    Article  CAS  PubMed  Google Scholar 

  21. Nelson RL. The comparative clinical pharmacology and pharmacokinetics of vindesine, vincristine, and vinblastine in human patients with cancer. Med Pediatr Oncol. 1982;10(2):115–27.

    Article  CAS  PubMed  Google Scholar 

  22. Khan J, et al. Attenuation of vincristine-induced neuropathy by synthetic cyclohexenone-functionalized derivative in mice model. Neurol Sci. 2019;40:1799–811.

    Article  PubMed  Google Scholar 

  23. Farsi L, Keshavarz M, Afshari K, Javidan AN. Intravenous granulocyte colony-stimulating factor administration can attenuate neuropathic pain following spinal cord injury in male rats. Acta Med Iran. 2018;56(4):226–33.

    Google Scholar 

  24. Ja’afer FM, Hamdan FB, Mohammed FH. Vincristine-induced neuropathy in rat: electrophysiological and histological study. Exp Brain Res. 2006;173(2):334–45.

    Article  PubMed  Google Scholar 

  25. Shen H, et al. An integrated cell isolation and purification method for rat dorsal root ganglion neurons. J Int Med Res. 2019;47(7):3253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buege JA, Aust SD. [30] Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–10.

    Article  CAS  PubMed  Google Scholar 

  27. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  28. Jain P, et al. Vincristine-induced neuropathy in childhood ALL (acute lymphoblastic leukemia) survivors: prevalence and electrophysiological characteristics. J Child Neurol. 2014;29(7):932–7.

    Article  PubMed  Google Scholar 

  29. Upmanyu R, Dvivedi J, Saxena Y. Hepatotoxic effects of vincristine: an experimental study on albino rats. Indian J Physiol Pharmacol. 2009;53(3):265–70.

    CAS  PubMed  Google Scholar 

  30. Geisler S, et al. Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain. 2016;139(12):3092–108.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Brigo F, et al. Vincristine-related neuropathy versus acute inflammatory demyelinating polyradiculoneuropathy in children with acute lymphoblastic leukemia. J Child Neurol. 2012;27(7):867–74.

    Article  PubMed  Google Scholar 

  32. Boyle FM, Wheeler HR, Shenfield GM. Glutamate ameliorates experimental vincristine neuropathy. J Pharmacol Exp Ther. 1996;279(1):410–5.

    CAS  PubMed  Google Scholar 

  33. Cavaletti G, et al. The Total Neuropathy Score as an assessment tool for grading the course of chemotherapy-induced peripheral neurotoxicity: comparison with the National Cancer Institute-Common Toxicity Scale. J Peripher Nerv Syst. 2007;12(3):210–5.

    Article  PubMed  Google Scholar 

  34. Wang Y, et al. Sensitization of TRPV1 receptors by TNF-α orchestrates the development of vincristine-induced pain. Oncol Lett. 2018;15(4):5013–9.

    PubMed  PubMed Central  Google Scholar 

  35. Liang H, et al. Effect of NF-kB signaling pathway on the expression of MIF, TNF-α, IL-6 in the regulation of intervertebral disc degeneration. J Musculoskelet Neuronal Interact. 2018;18(4):551.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Adjuto-Saccone M, et al. TNF-α induces endothelial–mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death Dis. 2021;12(7):1–15.

    Article  Google Scholar 

  37. Cagnol S, Chambard JC. ERK and cell death: mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. FEBS J. 2010;277(1):2–21.

    Article  CAS  PubMed  Google Scholar 

  38. Malleo G, et al. TNF-alpha as a therapeutic target in acute pancreatitis–lessons from experimental models. Sci World J. 2007;7:431–48.

    Article  CAS  Google Scholar 

  39. Topp KS, Tanner KD, Levine JD. Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J Comp Neurol. 2000;424(4):563–76.

    Article  CAS  PubMed  Google Scholar 

  40. Kiguchi N, et al. The critical role of invading peripheral macrophage-derived interleukin-6 in vincristine-induced mechanical allodynia in mice. Eur J Pharmacol. 2008;592(1–3):87–92.

    Article  CAS  PubMed  Google Scholar 

  41. Diaz-Ruiz A, et al. Delayed administration of dapsone protects from tissue damage and improves recovery after spinal cord injury. J Neurosci Res. 2011;89(3):373–80.

    Article  CAS  PubMed  Google Scholar 

  42. Afshari K, et al. Antibiotics with therapeutic effects on spinal cord injury: a review. Fundam Clin Pharmacol. 2021;35(2):277–304.

    Article  CAS  PubMed  Google Scholar 

  43. Muthuraman A, et al. Ameliorative effects of amiloride and pralidoxime in chronic constriction injury and vincristine induced painful neuropathy in rats. Eur J Pharmacol. 2008;587(1–3):104–11.

    Article  CAS  PubMed  Google Scholar 

  44. Shati AA. Sub-chronic administration of vincristine sulfate induces renal damage and apoptosis in rats via induction of oxidative stress and activation of Raf1-MEK1/2-Erk1/2 signal transduction. Int J Morphol. 2019;37(1):273–83.

    Article  Google Scholar 

  45. Groninger E, et al. Vincristine induced apoptosis in acute lymphoblastic leukaemia cells: a mitochondrial controlled pathway regulated by reactive oxygen species? Int J Oncol. 2002;21(6):1339–45.

    CAS  PubMed  Google Scholar 

  46. Diaz-Ruiz A, Nader-Kawachi J, Calderón-Estrella F, Mata-Bermudez A, Alvarez-Mejia L, Ríos C. Dapsone, an effective neuro, and cytoprotective drug and more. Curr Neuropharmacol. 2022;20(1):194–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mahale A, et al. Dapsone prolong delayed excitotoxic neuronal cell death by interacting with proapoptotic/survival signaling proteins. J Stroke Cerebrovasc Dis. 2020;29(8):104848.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Gilaranco Co. for providing dapsone powder for this research. Special thanks go to the Mehr Laboratory for their help.

Funding

This study was supported by the National Institute for Medical Research Development [Grant No 971024] and Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Reza Dehpour.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayesteh, S., Khalilzadeh, M., Takzaree, N. et al. Dapsone improves the vincristine-induced neuropathic nociception by modulating neuroinflammation and oxidative stress. DARU J Pharm Sci 30, 303–310 (2022). https://doi.org/10.1007/s40199-022-00448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-022-00448-6

Keywords

Navigation