Skip to main content
Log in

Spray freeze drying to solidify Nanosuspension of Cefixime into inhalable microparticles

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Purpose

Spray-freeze drying (SFD) incorporating diverse carbohydrates and leucine was employed to obtain dried nanosuspension of cefixime with improved dissolution profile, good dispersibility, and excellent inhalation performance.

Methods

Nanoprecipitation was utilized to prepare nanoparticles (NPs). Nanosuspensions of cefixime were solidified via SFD to access inhalable microparticles. The aerosolization efficiencies were evaluated through twin stage impinger (TSI). Laser light scattering and scanning electron microscopy (SEM) provided assistance to determine the particle size/size distribution and morphology, respectively. Amorphous/ crystalline states of materials were examined via differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Release profiles of candidate preparations were evaluated.

Results

The fine particle fraction (FPF) ranged from 18.96 ± 0.76 to 79.28 ± 0.45%. The highest value resulted from trehalose with NP/carrier ratio of 1:1 and leucine 20%. The particle size varied from 5.24 ± 0.97 to 10.17 ± 1.01 μm. The most and the least size distribution were achieved in mannitol and trehalose containing formulations, respectively. The majority of samples demonstrated ideally spherical morphology with diverse degrees of porosity and without needle-shaped structure. Percentages of release in F7 and F8 were 89.33 ± 0.88% and 93.54 ± 1.02%, respectively, via first 10 min.

Conclusion

SFD of nanosuspensions can be established as a platform for the pulmonary delivery of poorly water-soluble molecules of cefixime. Trehalose and raffinose with a lower ratio of NP to the carrier and higher level of leucine could be introduced as favorable formulations for further respiratory delivery of cefixime.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brogden RN, Campoli-Richards DM. Cefixime. A review of its antibacterial activity. Pharmacokinetic properties and therapeutic potential. Drugs. 1989;38(4):524–50.

    Article  CAS  PubMed  Google Scholar 

  2. Mamzoridi K, et al. Pharmacokinetics of cefixime in children with urinary tract infections after a single oral dose. Pharmacol Toxicol. 1996;78(6):417–20.

    Article  CAS  PubMed  Google Scholar 

  3. Hamilton-Miller JM. Overview of cefixime use in community-acquired infections. Clin Microbiol Infect : Off Publ Eur Soc Clin Microbiol Infect Dis. 2000;6(Suppl 3):79–81.

    Article  CAS  Google Scholar 

  4. Genvresse I, Carbon C. Cefixime. Int J Antimicrob Agents. 1993;3(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  5. Ramirez E, et al. Acceptability and characteristics of 124 human bioequivalence studies with active substances classified according to the biopharmaceutic classification system. Br J Clin Pharmacol. 2010;70(5):694–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kneer J. Pharmacokinetic properties of new oral cephalosporins. Med Mal Infect. 1992;22:556–64.

    Article  Google Scholar 

  7. Hecq J, et al. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm. 2005;299(1–2):167–77.

    Article  CAS  PubMed  Google Scholar 

  8. Ali HS, York P, Blagden N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Int J Pharm. 2009;375(1–2):107–13.

    Article  CAS  PubMed  Google Scholar 

  9. Niwa T, Danjo K. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs. Eur J Pharm Sci : Off J Eur Fed Pharm Sci. 2013;50(3–4):272–81.

    Article  CAS  Google Scholar 

  10. Wang Y, et al. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–41.

    Article  CAS  PubMed  Google Scholar 

  11. Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharm. 2015;488(1):136–53.

    Article  CAS  PubMed  Google Scholar 

  12. Bi R, et al. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery. J Drug Target. 2008;16(9):639–48.

    Article  CAS  PubMed  Google Scholar 

  13. Mohri K, et al. Optimized pulmonary gene transfection in mice by spray–freeze dried powder inhalation. J Control Release. 2010;144(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  14. Roa WH, et al. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J Control Release. 2011;150(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  15. Rau JL. The inhalation of drugs: advantages and problems. Respir Care. 2005;50(3):367–82.

    PubMed  Google Scholar 

  16. Park C-W, et al. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols. Int J Pharm. 2013;455(1):374–92.

    Article  CAS  PubMed  Google Scholar 

  17. Chan JGY, et al. A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur J Pharm Biopharm. 2013;83(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  18. D’Addio SM, et al. Aerosol delivery of nanoparticles in uniform mannitol carriers formulated by ultrasonic spray freeze drying. Pharm Res. 2013;30(11):2891–901.

    Article  PubMed  CAS  Google Scholar 

  19. Rahimpour Y, Kouhsoltani M, Hamishehkar H. Alternative carriers in dry powder inhaler formulations. Drug Discov Today. 2014;19(5):618–26.

    Article  PubMed  Google Scholar 

  20. Ógáin ON, et al. Particle engineering of materials for oral inhalation by dry powder inhalers. I—particles of sugar excipients (trehalose and raffinose) for protein delivery. Int J Pharm. 2011;405(1–2):23–35.

    Article  PubMed  CAS  Google Scholar 

  21. Raula J, et al. Investigations on particle surface characteristics vs. dispersion behaviour of l-leucine coated carrier-free inhalable powders. Int J Pharm. 2010;385(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  22. Cheow WS, et al. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Int J Pharm. 2011;404(1–2):289–300.

    Article  CAS  PubMed  Google Scholar 

  23. Molina C, Kaialy W, Nokhodchi A. The crucial role of leucine concentration on spray dried mannitol-leucine as a single carrier to enhance the aerosolization performance of albuterol sulfate. J Drug Deliv Sci Technol. 2019;49:97–106.

    Article  CAS  Google Scholar 

  24. Leng D, et al. Formulating inhalable dry powders using two-fluid and three-fluid nozzle spray drying. Pharm Res. 2018;35(12):247.

    Article  PubMed  CAS  Google Scholar 

  25. Niwa T, Mizutani D, Danjo K. Spray freeze-dried porous microparticles of a poorly water-soluble drug for respiratory delivery. Chem Pharm Bull. 2012;60(7):870–6.

    Article  CAS  Google Scholar 

  26. Chiang P-C, et al. Evaluation of aerosol delivery of Nanosuspension for pre-clinical pulmonary drug delivery. Nanoscale Res Lett. 2009;4(3):254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghasemian E, et al. Optimization of cefixime nanosuspension to improve drug dissolution. Pharm Sci. 2015;21(3):136.

    Article  Google Scholar 

  28. Alaei S, Ghasemian E, Vatanara A. Spray drying of cefixime nanosuspension to form stabilized and fast dissolving powder. Powder Technol. 2016;288:241–8.

    Article  CAS  Google Scholar 

  29. Ogáin ON, et al. Particle engineering of materials for oral inhalation by dry powder inhalers. I-particles of sugar excipients (trehalose and raffinose) for protein delivery. Int J Pharm. 2011;405(1–2):23–35.

    Article  PubMed  CAS  Google Scholar 

  30. Parsian AR, et al. Inhalable budesonide porous microparticles tailored by spray freeze drying technique. Powder Technol. 2014;260:36–41.

    Article  CAS  Google Scholar 

  31. Lechuga-Ballesteros D, et al. Trileucine improves aerosol performance and stability of spray-dried powders for inhalation. J Pharm Sci. 2008;97(1):287–302.

    Article  CAS  PubMed  Google Scholar 

  32. Bozdag S, et al. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. J Pharm Pharmacol. 2005;57(6):699–707.

    Article  CAS  PubMed  Google Scholar 

  33. Hulse WL, et al. Influence of protein on mannitol polymorphic form produced during co-spray drying. Int J Pharm. 2009;382(1–2):67–72.

    Article  CAS  PubMed  Google Scholar 

  34. Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm. 2006;63(2):87–94.

    Article  CAS  PubMed  Google Scholar 

  35. Pikal MJ, et al. The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm Res. 1991;8(4):427–36.

    Article  CAS  PubMed  Google Scholar 

  36. Torrado S, Torrado S. Characterization of physical state of mannitol after freeze-drying: effect of acetylsalicylic acid as a second crystalline cosolute. Chem Pharm Bull (Tokyo). 2002;50(5):567–70.

    Article  CAS  Google Scholar 

  37. Rahmati MR, et al. Effect of formulation ingredients on the physical characteristics of salmeterol xinafoate microparticles tailored by spray freeze drying. Adv Powder Technol. 2013;24(1):36–42.

    Article  CAS  Google Scholar 

  38. Singh BK, et al. Study on gamma and electron beam sterilization of third generation cephalosporins cefdinir and cefixime in solid state. Radiat Phys Chem. 2010;79(10):1079–87.

    Article  CAS  Google Scholar 

  39. Bhaskar R, Patil P. Nanocrystal suspension of cefixime trihydrate preparation by high-pressure homogenization formulation design using 23 factorial design. Int J Pharm Pharm Sci. 2017;9:64.

    Article  CAS  Google Scholar 

  40. Hooton JC, Jones MD, Price R. Predicting the behavior of novel sugar carriers for dry powder inhaler formulations via the use of a cohesive-adhesive force balance approach. J Pharm Sci. 2006;95(6):1288–97.

    Article  CAS  PubMed  Google Scholar 

  41. Chen L, et al. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev. 2016;100:102–15.

    Article  CAS  PubMed  Google Scholar 

  42. Schoubben A, et al. Capreomycin inhalable powders prepared with an innovative spray-drying technique. Int J Pharm. 2014;469(1):132–9.

    Article  CAS  PubMed  Google Scholar 

  43. Prime D, et al. Review of dry powder inhalers. Adv Drug Deliv Rev. 1997;26(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  44. Maa Y-F, et al. The effect of operating and formulation variables on the morphology of spray-dried protein particles. Pharm Dev Technol. 1997;2(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  45. Bosquillon C, et al. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70(3):329–39.

    Article  CAS  PubMed  Google Scholar 

  46. Yu H, et al. Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: spray drying versus spray freeze drying preparation. Int J Pharm. 2016;499(1–2):38–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Homa Faghihi or Alireza Vatanara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighi, D.M., Faghihi, H., Darabi, M. et al. Spray freeze drying to solidify Nanosuspension of Cefixime into inhalable microparticles. DARU J Pharm Sci 30, 17–27 (2022). https://doi.org/10.1007/s40199-021-00426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-021-00426-4

Keywords

Navigation