Skip to main content

Advertisement

Log in

A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets

  • Review Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

A Correction to this article was published on 26 November 2018

This article has been updated

Abstract

Inflammatory bowel diseases (IBD), which is classified into Crohn’s disease and ulcerative colitis, are among chronic gastrointestinal diseases with unknown pathogenesis. Diverse strategies have been applied for the treatment of this chronic disease. However, selective and site-specific routes of drug delivery to the inflamed location of the colon remain of high importance. Consequently, the application and effects of natural products in the form of nanoformulation and stimuli responsive nanoparticles as a novel strategy for the treatment of IBD are discussed in this review article. This approach may potentially overcome some complications that are associated with conventional means of colon drug delivery. Meanwhile, in vitro and in vivo studies pave the way for understanding of the mechanism that lies behind this chronic relapsing disease and potentially more effective treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 26 November 2018

    The corresponding author, Mohammad Hosein Farzaei, affiliation is Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran. The correct spelling of the 7th author surname is Iranpanah.

References

  1. Beloqui A, Memvanga PB, Coco R, Reimondez-Troitiño S, Alhouayek M, Muccioli GG, et al. A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids Surf B: Biointerfaces. 2016;143:327–35.

    Article  CAS  PubMed  Google Scholar 

  2. Cazarin CB, da Silva JK, Colomeu TC, Batista ÂG, Vilella CA, Ferreira AL, et al. Passiflora edulis peel intake and ulcerative colitis: approaches for prevention and treatment. Exp Biol Med. 2014;239(5):542–51.

    Article  CAS  Google Scholar 

  3. Zhang M, Wang X, Han MK, Collins JF, Merlin D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine. 2017;12(16):1927–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bribi N, Algieri F, Rodriguez-Nogales A, Vezza T, Garrido-Mesa J, Utrilla MP, et al. Intestinal anti-inflammatory effects of total alkaloid extract from Fumaria capreolata in the DNBS model of mice colitis and intestinal epithelial CMT93 cells. Phytomedicine. 2016;23(9):901–13.

    Article  CAS  PubMed  Google Scholar 

  5. Castro J, Ocampo Y, Franco L. Cape gooseberry [Physalis peruviana L.] calyces ameliorate TNBS acid-induced colitis in rats. J Crohn's Colitis. 2015;9(11):1004–15.

    Article  Google Scholar 

  6. Hur SJ, Kang SH, Jung HS, Kim SC, Jeon HS, Kim IH, et al. Review of natural products actions on cytokines in inflammatory bowel disease. Nutr Res. 2012;32(11):801–16.

    Article  CAS  PubMed  Google Scholar 

  7. Saeidnia S, Abdollahi M. Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol. 2013;273(3):442–55.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang M, Viennois E, Prasad M, Zhang Y, Wang L, Zhang Z, et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials. 2016;101:321–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mozaffari S, Nikfar S, Abdolghaffari AH, Abdollahi M. New biologic therapeutics for ulcerative colitis and Crohn's disease. Expert Opin Biol Ther. 2014;14(5):583–600.

    Article  CAS  PubMed  Google Scholar 

  10. Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, et al. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomedicine. 2017;12:2689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Das S, Deshmukh R, Jha A. Role of natural polymers in the development of multiparticulate systems for colon drug targeting. Systematic Reviews in pharmacy. 2010;1(1):79.

    Article  CAS  Google Scholar 

  12. Laroui H, Dalmasso G, Nguyen HTT, Yan Y, Sitaraman SV, Merlin D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology 2010;138(3):843–853. e2.

    Article  CAS  Google Scholar 

  13. Grivennikov SI, Karin M. Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis. 2011;70(Suppl 1):i104–i8.

    Article  CAS  PubMed  Google Scholar 

  14. Chan AT, Giovannucci EL. Primary prevention of colorectal cancer. Gastroenterology 2010;138(6):2029–2043. e10.

    Article  CAS  PubMed  Google Scholar 

  15. Fukata M, Shang L, Santaolalla R, Sotolongo J, Pastorini C, España C, et al. Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis. 2010;17(7):1464–73.

    Article  PubMed  Google Scholar 

  16. Karimi M, Zare H, Bakhshian Nik A, Yazdani N, Hamrang M, Mohamed E, et al. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine. 2016;11(5):513–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SMM, Mirshekari H, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zangabad PS, Mirkiani S, Shahsavari S, Masoudi B, Masroor M, Hamed H, et al. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol Rev. 2017.

  19. Mura C, Nácher A, Merino V, Merino-Sanjuan M, Manconi M, Loy G, et al. Design, characterization and in vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery. Colloids Surf B: Biointerfaces. 2012;94:199–205.

    Article  CAS  PubMed  Google Scholar 

  20. Seremeta KP, Chiappetta DA, Sosnik A. Poly (ɛ-caprolactone), Eudragit® RS 100 and poly (ɛ-caprolactone)/Eudragit® RS 100 blend submicron particles for the sustained release of the antiretroviral efavirenz. Colloids Surf B: Biointerfaces. 2013;102:441–9.

    Article  CAS  PubMed  Google Scholar 

  21. Collnot E-M, Ali H, Lehr C-M. Nano-and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release. 2012;161(2):235–46.

    Article  CAS  PubMed  Google Scholar 

  22. Meissner HI, Breen N, Klabunde CN, Vernon SW. Patterns of colorectal cancer screening uptake among men and women in the United States. Cancer Epidemiol Biomark Prev. 2006;15(2):389–94.

    Article  Google Scholar 

  23. Xiao B, Zhang M, Viennois E, Zhang Y, Wei N, Baker MT, et al. Inhibition of MDR1 gene expression and enhancing cellular uptake for effective colon cancer treatment using dual-surface-functionalized nanoparticles. Biomaterials. 2015;48:147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao B, Si X, Zhang M, Merlin D. Oral administration of pH-sensitive curcumin-loaded microparticles for ulcerative colitis therapy. Colloids Surf B: Biointerfaces. 2015;135:379–85.

    Article  CAS  PubMed  Google Scholar 

  25. Beloqui A, Coco R, Memvanga PB, Ucakar B, des Rieux A, Préat V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int J Pharm 2014;473(1–2):203–212.

    Article  CAS  PubMed  Google Scholar 

  26. Gugulothu D, Kulkarni A, Patravale V, Dandekar P. pH-sensitive nanoparticles of curcumin–celecoxib combination: evaluating drug synergy in ulcerative colitis model. J Pharm Sci. 2014;103(2):687–96.

    Article  CAS  PubMed  Google Scholar 

  27. Ali H, Weigmann B, Neurath M, Collnot E, Windbergs M, Lehr C-M. Budesonide loaded nanoparticles with pH-sensitive coating for improved mucosal targeting in mouse models of inflammatory bowel diseases. J Control Release. 2014;183:167–77.

    Article  CAS  PubMed  Google Scholar 

  28. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.

    Article  CAS  PubMed  Google Scholar 

  29. Castangia I, Nácher A, Caddeo C, Merino V, Díez-Sales O, Catalán-Latorre A, et al. Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomater. 2015;13:216–27.

    Article  CAS  PubMed  Google Scholar 

  30. Sinha V, Kumria R. Microbially triggered drug delivery to the colon. Eur J Pharm Sci. 2003;18(1):3–18.

    Article  CAS  PubMed  Google Scholar 

  31. Saphier S, Haft A, Margel S. Bacterial reduction as means for colonic drug delivery: can other chemical groups provide an alternative to the azo bond? J Med Chem. 2012;55(23):10781–5.

    Article  CAS  PubMed  Google Scholar 

  32. Qiao H, Fang D, Chen J, Sun Y, Kang C, Di L, et al. Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease. Drug Deliv. 2017;24(1):233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun Q, Luan L, Arif M, Li J, Dong Q-J, Gao Y, et al. Redox-sensitive nanoparticles based on 4-aminothiophenol-carboxymethyl inulin conjugate for budesonide delivery in inflammatory bowel diseases. Carbohydr Polym. 2017.

  34. Zhuang X, Deng Z-B, Mu J, Zhang L, Yan J, Miller D, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles. 2015;4(1):28713.

    Article  CAS  PubMed  Google Scholar 

  35. Panahi Y, Badeli R, Karami GR, Sahebkar A. Investigation of the efficacy of adjunctive therapy with bioavailability-boosted curcuminoids in major depressive disorder. Phytother Res. 2015;29(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  36. Ohno M, Nishida A, Sugitani Y, Nishino K, Inatomi O, Sugimoto M, et al. Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One. 2017;12(10):e0185999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gazak R, Walterova D, Kren V. Silybin and silymarin-new and emerging applications in medicine. Curr Med Chem. 2007;14(3):315–38.

    Article  CAS  PubMed  Google Scholar 

  38. Katiyar SK, Roy AM, Baliga MS. Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol Cancer Ther. 2005;4(2):207–16.

    CAS  PubMed  Google Scholar 

  39. Zamamiri-Davis F, Lu Y, Thompson JT, Prabhu KS, Reddy PV, Sordillo LM, et al. Nuclear factor-κB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency. Free Radic Biol Med. 2002;32(9):890–7.

    Article  CAS  PubMed  Google Scholar 

  40. Duntas L. Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res. 2009;41(06):443–7.

    Article  CAS  PubMed  Google Scholar 

  41. Miroliaee AE, Esmaily H, Vaziri-Bami A, Baeeri M, Shahverdi AR, Abdollahi M. Amelioration of experimental colitis by a novel nanoselenium–silymarin mixture. Toxicol Mech Methods. 2011;21(3):200–8.

    Article  CAS  PubMed  Google Scholar 

  42. Varshosaz J, Minaiyan M, Khaleghi N. Eudragit nanoparticles loaded with silybin: a detailed study of preparation, freeze-drying condition and in vitro/in vivo evaluation. J Microencapsul. 2015;32(3):211–23.

    Article  CAS  PubMed  Google Scholar 

  43. Brown AC, Shah C, Liu J, Pham JT, Zhang JG, Jadus MR. Ginger's (Zingiber officinale roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro. Phytother Res. 2009;23(5):640–5.

    Article  PubMed  Google Scholar 

  44. Grzanna R, Lindmark L, Frondoza CG. Ginger—an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 2005;8(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  45. Chessa M, Caddeo C, Valenti D, Manconi M, Sinico C, Fadda AM. Effect of penetration enhancer containing vesicles on the percutaneous delivery of quercetin through new born pig skin. Pharmaceutics. 2011;3(3):497–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guazelli CF, Fattori V, Colombo BB, Georgetti SR, Vicentini FT, Casagrande R, et al. Quercetin-loaded microcapsules ameliorate experimental colitis in mice by anti-inflammatory and antioxidant mechanisms. J Nat Prod. 2013;76(2):200–8.

    Article  CAS  PubMed  Google Scholar 

  47. Caddeo C, Nácher A, Díez-Sales O, Merino-Sanjuán M, Fadda AM, Manconi M. Chitosan–xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. J Microencapsul. 2014;31(7):694–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther. 2013;21(7):1345–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chitra M, Sukumar E, Suja V, Devi S. Antitumor, anti-inflammatory and analgesic property of embelin. A plant product Chemotherapy. 1994;40(2):109–13.

    CAS  PubMed  Google Scholar 

  50. Kumar K, Dhamotharan R, Kulkarni NM, Honnegowda S, Murugesan S. Embelin ameliorates dextran sodium sulfate-induced colitis in mice. Int Immunopharmacol. 2011;11(6):724–31.

    Article  CAS  Google Scholar 

  51. Thippeswamy BS, Mahendran S, Biradar MI, Raj P, Srivastava K, Badami S, et al. Protective effect of embelin against acetic acid induced ulcerative colitis in rats. Eur J Pharmacol. 2011;654(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  52. Badamaranahalli SS, Kopparam M, Bhagawati ST, Durg S. Embelin lipid nanospheres for enhanced treatment of ulcerative colitis–preparation. Characterization and in vivo Evaluation. Eur J Pharm Sci. 2015;76:73–82.

    Article  CAS  PubMed  Google Scholar 

  53. Jain A, Gupta Y, Jain SK. Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J Pharm Pharm Sci. 2007;10(1):86–128.

    CAS  PubMed  Google Scholar 

  54. Zhou S, Zhang B, Liu X, Teng Z, Huan M, Yang T, et al. A new natural Angelica polysaccharide based colon-specific drug delivery system. J Pharm Sci. 2009;98(12):4756–68.

    Article  CAS  PubMed  Google Scholar 

  55. Li Y, Fan L, Tang T, Tang Y, Xie M, Zeng X, et al. Modified apple polysaccharide prevents colitis through modulating IL-22 and IL-22BP expression. Int J Biol Macromol. 2017;103:1217–23.

    Article  CAS  PubMed  Google Scholar 

  56. Laroui H, Wilson DS, Dalmasso G, Salaita K, Murthy N, Sitaraman SV, et al. Nanomedicine in GI. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;300(3):G371–G83.

    Article  CAS  PubMed  Google Scholar 

  57. Hardy J, Wilson C, Wood E. Drug delivery to the proximal colon. J Pharm Pharmacol. 1985;37(12):874–7.

    Article  CAS  PubMed  Google Scholar 

  58. Adkin D, Davis S, Sparrow R, Wilding I. Colonic transit of different sized tablets in healthy subjects. J Control Release. 1993;23(2):147–56.

    Article  CAS  Google Scholar 

  59. Tamura A, Ozawa K, Ohya T, Tsuyama N, Eyring EM, Masujima T. Nanokinetics of drug molecule transport into a single. Cell. 2006.

  60. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.

    Article  CAS  PubMed  Google Scholar 

  61. Powell JJ, Faria N. Thomas-McKay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun. 2010;34(3):J226–J33.

    Article  CAS  PubMed  Google Scholar 

  62. Yun Y, Cho YW, Park K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev. 2013;65(6):822–32.

    Article  CAS  PubMed  Google Scholar 

  63. Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. 2016;20(1):1.

    PubMed  PubMed Central  Google Scholar 

  64. Koopaei NN, Abdollahi M. Opportunities and obstacles to the development of nanopharmaceuticals for human use. In: BioMed central, vol. 24; 2016.

    Google Scholar 

  65. Lujan H, Sayes CM. Cytotoxicological pathways induced after nanoparticle exposure: studies of oxidative stress at the ‘nano–bio’interface. Toxicol Res. 2017;6(5):580–94.

    Article  CAS  Google Scholar 

  66. Mostafalou S, Mohammadi H, Ramazani A, Abdollahi M. Different biokinetics of nanomedicines linking to their toxicity; an overview. BioMed Central; 2013.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hosein Farzaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghipour, Y.D., Bahramsoltani, R., Marques, A.M. et al. A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets. DARU J Pharm Sci 26, 229–239 (2018). https://doi.org/10.1007/s40199-018-0222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-018-0222-4

Keywords

Navigation