Skip to main content

Advertisement

Log in

Magnetic delivery of antitumor carboplatin by using PEGylated-Niosomes

  • Research Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

To improve the efficiency of niosomal drug delivery, here we employed two tactics. First, niosomes were magnetized using Fe3O4@SiO2 mangnetic nanoparticles, and second, their surface was modified by PEGylation. PEGylation was intended for increasing the bioavailability of niosomes, and magnetization was used for rendering them capable of targeting specific tissues. These PEGylated magnetic niosomes were also loaded with Carboplatin, an antitumor drug. Next, these niosomes were studied in terms of size, morphology, zeta potential, and drug entrapment efficiency. Then, the in vitro drug release from these modified niosomes was compared to that of both naked and nonmagnetized niosomes. Interestingly, although loading of naked-niosomes with magnetic particles lead to an increase in the rate of drug release, PEGylation of these magnetized niosomes caused a more sustained drug release. Thus, PEGylation of magnetic niosomes, besides improving their bioavailability, caused a slower and sustained release of the drug over time. Finally, studying the in vitro effectives of niosomal formulations towards MCF-7, a breast cancer cell line, showed that PEGylated magnetic niosomes had a satisfactory toxicity towards these cells in the presence of an external magnetic field. In conclusion, PEGylated magnetic niosomes showed enhanced qualities regarding the controlled release and delivery of drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moghassemi S, Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release. 2014;185:22–36. https://doi.org/10.1016/j.jconrel.2014.04.015.

    Article  CAS  PubMed  Google Scholar 

  2. Nematollahi MH, Pardakhty A, Torkzadeh-Mahani M, Mehrabani M, Asadikaram G. Changes in physical and chemical properties of niosome membrane induced by cholesterol: a promising approach for niosome bilayer intervention. RSC Adv. 2017;7:49463–72. https://doi.org/10.1039/c7ra07834j.

    Article  CAS  Google Scholar 

  3. Liu T, Guo R, Hua W, Qiu J. Structure behaviors of hemoglobin in PEG 6000/tween 80/span 80/H2O niosome system. Colloids Surfaces A Physicochem Eng Asp. 2007;293:255–61. https://doi.org/10.1016/j.colsurfa.2006.07.053.

    Article  CAS  Google Scholar 

  4. Coviello T, Trotta AM, Marianecci C, Carafa M, Di Marzio L, Rinaldi F, et al. Gel-embedded niosomes: preparation, characterization and release studies of a new system for topical drug delivery. Colloids Surf B: Biointerfaces. 2015;125:291–9. https://doi.org/10.1016/j.colsurfb.2014.10.060.

    Article  CAS  PubMed  Google Scholar 

  5. Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Control Release. 1994;30:1–15. https://doi.org/10.1016/0168-3659(94)90039-6.

    Article  CAS  Google Scholar 

  6. Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci. 2010;99:2049–60. https://doi.org/10.1002/jps.21944.

    Article  CAS  PubMed  Google Scholar 

  7. Priprem A, Damrongrungruang T, Limsitthichaikoon S, Khampaenjiraroch B, Nukulkit C, Thapphasaraphong S, et al. Topical Niosome gel containing an anthocyanin complex: a potential Oral wound healing in rats. AAPS PharmSciTech. 2018;19:1681–92. https://doi.org/10.1208/s12249-018-0966-7.

    Article  CAS  PubMed  Google Scholar 

  8. Attia N, Mashal M, Grijalvo S, Eritja R, Zárate J, Puras G, et al. Stem cell-based gene delivery mediated by cationic niosomes for bone regeneration. Nanomedicine. 2018;14:521–31. https://doi.org/10.1016/j.nano.2017.11.005.

    Article  CAS  PubMed  Google Scholar 

  9. Puras G, Mashal M, Zárate J, Agirre M, Ojeda E, Grijalvo S, et al. A novel cationic niosome formulation for gene delivery to the retina. J Control Release. 2014;174:27–36. https://doi.org/10.1016/j.jconrel.2013.11.004.

    Article  CAS  PubMed  Google Scholar 

  10. Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull. 2011;34:945–53. https://doi.org/10.1248/bpb.34.945.

    Article  CAS  PubMed  Google Scholar 

  11. Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1:374–80. https://doi.org/10.4103/0110-5558.76435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He RX, Ye X, Li R, Chen W, Ge T, Huang TQ, et al. PEGylated niosomes-mediated drug delivery systems for Paeonol: preparation, pharmacokinetics studies and synergistic anti-tumor effects with 5-FU. J Liposome Res. 2017;27:161–70. https://doi.org/10.1080/08982104.2016.1191021.

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki R, Takizawa T, Kuwata Y, Mutoh M, Ishiguro N, Utoguchi N, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm. 2008;346:143–50. https://doi.org/10.1016/j.ijpharm.2007.06.010.

    Article  CAS  PubMed  Google Scholar 

  14. Tavano L, Vivacqua M, Carito V, Muzzalupo R, Caroleo MC, Nicoletta F. Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids Surf B: Biointerfaces. 2013;102:803–7. https://doi.org/10.1016/j.colsurfb.2012.09.019.

    Article  CAS  PubMed  Google Scholar 

  15. Liu FR, Jin H, Wang Y, Chen C, Li M, Mao SJ, et al. Anti-CD123 antibody-modified niosomes for targeted delivery of daunorubicin against acute myeloid leukemia. Drug Deliv. 2017;24:882–90. https://doi.org/10.1080/10717544.2017.1333170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fenton O, Olafson K, Pillai P, Mitchell M, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018;0:1705328. https://doi.org/10.1002/adma.201705328.

    Article  CAS  Google Scholar 

  17. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310–6. https://doi.org/10.1158/1078-0432.CCR-07-1441.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Yang F, Yuan C, Li M, Wang T, Chen B, et al. Magnetic Nanoliposomes as in situ microbubble bombers for multimodality image-guided Cancer Theranostics. ACS Nano. 2017;11:1509–19. https://doi.org/10.1021/acsnano.6b06815.

    Article  CAS  PubMed  Google Scholar 

  19. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res. 2010;62:144–9. https://doi.org/10.1016/j.phrs.2010.01.014.

    Article  CAS  PubMed  Google Scholar 

  20. Park JH, Cho HJ, Yoon HY, Yoon IS, Ko SH, Shim JS, et al. Hyaluronic acid derivative-coated nanohybrid liposomes for cancer imaging and drug delivery. J Control Release. 2014;174:98–108. https://doi.org/10.1016/j.jconrel.2013.11.016.

    Article  CAS  PubMed  Google Scholar 

  21. Ling D, Lee N, Hyeon T. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res. 2015;48:1276–85. https://doi.org/10.1021/acs.accounts.5b00038.

    Article  CAS  PubMed  Google Scholar 

  22. Shah SA, Aslam Khan MU, Arshad M, Awan SU, Hashmi MU, Ahmad N. Doxorubicin-loaded photosensitive magnetic liposomes for multi-modal cancer therapy. Colloids Surf B: Biointerfaces. 2016;148:157–64. https://doi.org/10.1016/j.colsurfb.2016.08.055.

    Article  CAS  PubMed  Google Scholar 

  23. Shi B, Fang C, Pei Y. Stealth PEG-PHDCA niosomes: effects of chain length of PEG and particle size on niosomes surface properties, in vitro drug release, phagocytic uptake, in vivo pharmacokinetics and antitumor activity. J Pharm Sci. 2006;95:1873–87. https://doi.org/10.1002/jps.20491.

    Article  CAS  PubMed  Google Scholar 

  24. Huang Y, Chen J, Chen X, Gao J, Liang W. PEGylated synthetic surfactant vesicles (Niosomes): novel carriers for oligonucleotides. J Mater Sci Mater Med. 2008;19:607–14. https://doi.org/10.1007/s10856-007-3193-4.

    Article  CAS  PubMed  Google Scholar 

  25. Dasari S, Bernard Tchounwou P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78. https://doi.org/10.1016/j.ejphar.2014.07.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:IN26–7. https://doi.org/10.1016/S0022-2836(65)80093-6.

    Article  Google Scholar 

  27. Tavano L, Muzzalupo R, Cassano R, Trombino S, Ferrarelli T, Picci N. New sucrose cocoate based vesicles: preparation characterization and skin permeation studies. Colloids Surf B: Biointerfaces. 2010;75:319–22. https://doi.org/10.1016/j.colsurfb.2009.09.003.

    Article  CAS  PubMed  Google Scholar 

  28. Kiwada H, Sato J, Yamada S, Kato Y. Feasibility of magnetic liposomes as a targeting device for drugs. Chem Pharm Bull (Tokyo). 1986;34:4253–8. https://doi.org/10.1248/cpb.34.4253.

    Article  CAS  Google Scholar 

  29. Li S, Rizzo MA, Bhattacharya S, Huang L. Characterization of cationic lipid-protamine–DNA (LPD) complexes for intravenous gene delivery. Gene Ther. 1998;5:930–7. https://doi.org/10.1038/sj.gt.3300683.

    Article  CAS  PubMed  Google Scholar 

  30. Fenton RR, Easdale WJ, Er HM, O’Mara SM, McKeage MJ, Russell PJ, et al. Preparation, DNA binding, and in vitro cytotoxicity of a pair of Enantiomeric platinum(II) complexes, [(R)- and (S)-3-Aminohexahydroazepine]dichloro- platinum(II). Crystal structure of the S enantiomer. J Med Chem. 1997;40:1090–8. https://doi.org/10.1021/jm9607966.

    Article  CAS  PubMed  Google Scholar 

  31. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4.

    Article  CAS  PubMed  Google Scholar 

  32. Stoline MR. The status of multiple comparisons: simultaneous estimation of all pairwise comparisons in one-way ANOVA designs. Am Stat. 1981;35:134–41. https://doi.org/10.1080/00031305.1981.10479331.

    Article  Google Scholar 

  33. Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-based drug delivery Systems in Cancer Therapy: what is available and what is yet to come. Pharmacol Rev. 2016;68:701–87. https://doi.org/10.1124/pr.115.012070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (London). 2013;8:1509–28. https://doi.org/10.2217/nnm.13.118.

    Article  CAS  Google Scholar 

  35. Shehata T, Kimura T, Higaki K, ichi Ogawara K. In-vivo disposition characteristics of PEG niosome and its interaction with serum proteins. Int J Pharm. 2016;512:322–8. https://doi.org/10.1016/j.ijpharm.2016.08.058.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng Y, Lei J, Chen Y, Ju H. Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and au nanoclusters. Biosens Bioelectron. 2014;51:431–6. https://doi.org/10.1016/j.bios.2013.08.014.

    Article  CAS  PubMed  Google Scholar 

  37. Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of Cisplatin-induced ototoxicity and Otoprotection. Front Cell Neurosci. 2017;11:338. https://doi.org/10.3389/fncel.2017.00338.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Apps MG, Choi EHY, Wheate NJ. The state-of-play and future of platinum drugs. Endocr Relat Cancer. 2015;22:R219–33. https://doi.org/10.1530/ERC-15-0237.

    Article  CAS  PubMed  Google Scholar 

  39. Chen X, Wang J, Fu Z, Zhu B, Wang J, Guan S, et al. Curcumin activates DNA repair pathway in bone marrow to improve carboplatin-induced myelosuppression. Sci Rep. 2017;7:17724. https://doi.org/10.1038/s41598-017-16436-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Torkzadeh-Mahani.

Ethics declarations

Conflict of interest

We confirm that there are no known conflicts of interest associated with this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davarpanah, F., Khalili Yazdi, A., Barani, M. et al. Magnetic delivery of antitumor carboplatin by using PEGylated-Niosomes. DARU J Pharm Sci 26, 57–64 (2018). https://doi.org/10.1007/s40199-018-0215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-018-0215-3

Keywords

Navigation