Skip to main content
Log in

Effects of Primary Carbide Size and Type on the Sliding Wear and Rolling Contact Fatigue Properties of M50 Bearing Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The influences of primary carbide size and type on the sliding wear behavior and rolling contact fatigue (RCF) properties of M50 bearing steel were systematically investigated under oil lubrication condition. A major breakthrough was achieved in the influence of primary carbide on tribological behavior. The opposite effect brought by primary carbide size on the sliding wear resistance and RCF life of M50 bearing steel was determined. Wear resistance increased with an increase in the studied primary carbide size, whereas RCF life decreased significantly. Compared with the 0 R and R positions with a relatively small carbide size, the wear volume of the 1/2 R position with a large carbide size was the smallest. Compared with the 0 R and R positions, the L10 life of the 1/2 R position decreased by 82.7% and 84.8%, respectively. On the basis of the statistical correlation between primary carbide size and the two tribological properties, a critical maximum carbide size of 5–10 μm was proposed to achieve optimal tribological performance. This research suggests that the equivalent diameter of the primary carbide should be controlled to be smaller than 10 μm, but further decreasing primary carbide size to less than 5 μm is unnecessary. The influence of primary carbide type in M50 bearing steel on sliding wear resistance was also discussed. Results indicate that the MC-type carbides with higher elastic modulus and microhardness exhibit better wear resistance than the M2C-type carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. T. Wollmann, S. Nitschke, T. Klauke, T. Behnisch, C. Ebert, R. Füßel, N. Modler, M. Gude, Tribol. Int. 165, 107280 (2022)

    Google Scholar 

  2. L. Rosado, H.K. Trivedi, D.T. Gerardi, Wear 196, 133 (1996)

    CAS  Google Scholar 

  3. X.F. Yu, Y.H. Wei, D.Y. Zheng, X.Y. Shen, Y. Su, Y.Z. Xia, Y.B. Liu, Tribol. Int. 165, 107285 (2022)

    CAS  Google Scholar 

  4. J. Guan, L.Q. Wang, Y.Z. Mao, X.J. Shi, X.X. Ma, B. Hu, Tribol. Int. 126, 218 (2018)

    CAS  Google Scholar 

  5. H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57, 268 (2012)

    CAS  Google Scholar 

  6. F. Wang, D.S. Qian, L. Hua, X.H. Lu, Tribol. Int. 132, 253 (2019)

    CAS  Google Scholar 

  7. H.W. Jiang, Y.R. Song, Y.C. Wu, D.B. Shan, Y.Y. Zong, Mater. Sci. Eng. A 798, 140196 (2020)

    CAS  Google Scholar 

  8. C.W. Zhang, B. Peng, L.Q. Wang, X.X. Ma, L. Gu, Wear 420–421, 116 (2019)

    Google Scholar 

  9. W.F. Liu, Y.F. Guo, Y.F. Cao, J.Q. Wang, Z.Y. Hou, M.Y. Sun, B. Xu, D.Z. Li, J. Alloy. Compd. 889, 161755 (2021)

    Google Scholar 

  10. L.N. Zhou, G.Z. Tang, X.X. Ma, L.Q. Wang, X.H. Zhang, Mater. Charact. 146, 258 (2018)

    CAS  Google Scholar 

  11. M.E. Curd, T.L. Burnett, J. Fellowes, J. Donoghue, P. Yan, P.J. Withers, Acta Mater. 174, 300 (2019)

    CAS  Google Scholar 

  12. F. Wang, D.S. Qian, L. Hua, L.C. Xie, Mater. Sci. Eng. A 807, 140895 (2021)

    CAS  Google Scholar 

  13. F. Wang, D.S. Qian, L. Hua, H.J. Mao, L.C. Xie, X.D. Song, Z.H. Dong, Mater. Sci. Eng. A 771, 138623 (2020)

    CAS  Google Scholar 

  14. J. Guan, L.Q. Wang, Z.Q. Zhang, X.J. Shi, X.X. Ma, Tribol. Int. 119, 165 (2018)

    CAS  Google Scholar 

  15. J.J. Rydel, I. Toda-Caraballo, G. Guetard, P.E.J. Rivera-Diaz-del-Castillo, Int. J. Fatigue 108, 68 (2018)

    Google Scholar 

  16. B. Loy, R. McCallum, Wear 24, 219 (1973)

    Google Scholar 

  17. F. Wang, Y.C. Du, D.S. Qian, N.N. Cao, L. Hua, M. Wu, J. Mater. Res. Technol. 18, 3857 (2022)

    CAS  Google Scholar 

  18. S. Liu, Z.J. Wang, Z.J. Shi, Y.F. Zhou, Q.X. Yang, J. Alloy. Compd. 713, 108 (2017)

    CAS  Google Scholar 

  19. M.A. Hamidzadeh, M. Meratian, M.M. Zahrani, Mater. Sci. Eng. A 556, 758 (2012)

    CAS  Google Scholar 

  20. F.X. Yin, L. Wang, Z.X. Xiao, J.H. Feng, L. Zhao, J. Rare Earths 38, 1030 (2020)

    CAS  Google Scholar 

  21. T.L. Liu, L.J. Chen, H.Y. Bi, X. Che, Acta Metall. Sin. -Engl. Lett. 27, 452 (2014)

    CAS  Google Scholar 

  22. K. Zelič, J. Burja, P.J. McGuiness, M. Godec, Sci. Rep. 8, 9233 (2018)

    Google Scholar 

  23. Y.K. Luan, N.N. Song, Y.L. Bai, X.H. Kang, D.Z. Li, J. Mater. Process. Technol. 210, 536 (2010)

    CAS  Google Scholar 

  24. K. Wieczerzak, P. Bala, R. Dziurka, T. Tokarski, G. Cios, T. Koziel, L. Gondek, J. Alloy. Compd. 698, 673 (2017)

    CAS  Google Scholar 

  25. W.F. Liu, Y.F. Cao, Y.F. Guo, M.Y. Sun, B. Xu, D.Z. Li, J. Mater. Sci. Technol. 38, 170 (2020)

    Google Scholar 

  26. J.Z. Jiang, Y. Liu, C.M. Liu, J. Mater. Res. Technol. 19, 4076 (2022)

    CAS  Google Scholar 

  27. L.J. Xu, W.L. Song, S.Q. Ma, Y.C. Zhou, K.M. Pan, S.Z. Wei, Tribol. Int. 154, 106719 (2021)

    CAS  Google Scholar 

  28. J. Krell, A. Röttger, W. Theisen, Wear 444–445, 203138 (2020)

    Google Scholar 

  29. L.J. Xu, S.Z. Wei, F.N. Xiao, H. Zhou, G.S. Zhang, J.W. Li, Wear 376, 968 (2017)

    Google Scholar 

  30. N.Y. Du, H.H. Liu, Y.F. Cao, P.X. Fu, C. Sun, H.W. Liu, D.Z. Li, Mater. Charact. 174, 111011 (2021)

    CAS  Google Scholar 

  31. J.J. Cheng, M.C. Mao, X.P. Gan, Q. Lei, Z. Li, K.C. Zhou, Friction 9, 1061 (2021)

    CAS  Google Scholar 

  32. W. Weibull, J. Appl. Mech. -Trans. ASME 18, 293 (1951)

    Google Scholar 

  33. Z.X. Cao, Z.Y. Shi, F. Yu, K.I. Sugimoto, W.Q. Cao, Y.Q. Weng, Int. J. Fatigue 128, 105176 (2019)

    CAS  Google Scholar 

  34. Z.T. Huang, W.H. Tian, W.X. Leng, Acta Metall. Sin. -Engl. Lett. 25, 401 (2012)

    CAS  Google Scholar 

  35. F. Steinweg, A. Mikitisin, M. Oezel, A. Schwedt, T. Janitzky, B. Hallstedt, C. Broeckmann, J. Mayer, Wear 504, 204394 (2022)

    Google Scholar 

  36. M. Oezel, A. Schwedt, T. Janitzky, R. Kelley, C. Bouchet-Marquis, L. Pullan, C. Broeckmann, J. Mayer, Wear 414, 352 (2018)

    Google Scholar 

  37. G. Guetard, I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Int. J. Fatigue 91, 59 (2016)

    CAS  Google Scholar 

  38. W.L. Silence, J. Lubr. Technol. 100, 428 (1978)

    Google Scholar 

  39. M.T. Mao, H.J. Guo, F. Wang, X.L. Sun, ISIJ Int. 59, 848 (2019)

    CAS  Google Scholar 

  40. G. Du, J. Li, Z.B. Wang, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 48, 2873 (2017)

    CAS  Google Scholar 

  41. C. Rodenburg, W.M. Rainforth, Acta Mater. 55, 2443 (2007)

    CAS  Google Scholar 

  42. L.Q. Yang, W.H. Xue, S.Y. Gao, H.W. Liu, Y.F. Cao, D.L. Duan, D.Z. Li, S. Li, Tribol. Int. 174, 107725 (2022)

    CAS  Google Scholar 

  43. M.T. Mao, H.J. Guo, F. Wang, X.L. Sun, Int. J. Miner. Metall. Mater. 26, 839 (2019)

    CAS  Google Scholar 

  44. N.Y. Du, H.H. Liu, Y.F. Cao, P.X. Fu, C. Sun, H.W. Liu, D.Z. Li, Mater. Charact. 186, 111822 (2022)

    CAS  Google Scholar 

  45. T. Lin, A.G. Evans, R.O. Ritchie, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 18, 641 (1987)

    Google Scholar 

  46. J.W. Geng, Y.G. Li, H.Y. Xiao, H.P. Li, H.H. Sun, D. Chen, M.L. Wang, H.W. Wang, Int. J. Fatigue 142, 105976 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDC04040402), and the financial and facility support for Liaoning Key Laboratory of Aero-engine Material Tribology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihai Xue, Yanfei Cao or Deli Duan.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Xue, W., Gao, S. et al. Effects of Primary Carbide Size and Type on the Sliding Wear and Rolling Contact Fatigue Properties of M50 Bearing Steel. Acta Metall. Sin. (Engl. Lett.) 36, 1336–1352 (2023). https://doi.org/10.1007/s40195-023-01543-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-023-01543-6

Keywords

Navigation