Skip to main content

Advertisement

Log in

Corrosion Behavior of 304 Stainless Steel Exposed to a Simulated Salt Lake Atmosphere

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The corrosion behavior of stainless steel exposed to a simulated salt lake atmosphere has been investigated by analyzing the evolution of surface morphologies and corrosion products, the initiation and development of pits, and the electrochemical characteristics. The results indicated that (Mg6Fe2(OH)16(CO3)(H2O)4.5)0.25, a layered double hydroxide, has been detected for the first time in the corrosion products formed on stainless steel exposed to a simulated salt lake atmosphere. The specimens exposed to MgCl2 deposit conditions were corroded more severely than those exposed to NaCl deposit conditions, which was attributed to the differences in the deliquescence relative humidity and efflorescence relative humidity values of MgCl2 and NaCl. In addition, a special corrosion morphology consisting of a concentric circle of yellowish material was observed on the specimens exposed to MgCl2 deposit conditions, which was attributed to the formation of Mg(OH)2, inhibiting the diffusion and migration of OH ions to the anode region. The maximum pit depth followed a power function with respect to corrosion time. The corrosion mechanism of stainless steel exposed to a simulated salt lake atmosphere is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.P. Leckie, H.H. Uhlig, J. Electrochem. Soc. 113, 1262 (1966)

    CAS  Google Scholar 

  2. N.J. Laycock, R.C. Newman, Corros. Sci. 39, 1771 (1997)

    CAS  Google Scholar 

  3. R.H. Jung, H. Tsuchiya, S. Fujimoto, Corros. Sci. 58, 62 (2012)

    CAS  Google Scholar 

  4. D. Wallinder, I.O. Wallinder, C. Leygraf, Corrosion 59, 220 (2003)

    CAS  Google Scholar 

  5. C. Pan, W.Y. Lv, Z.Y. Wang, W. Su, C. Wang, S.N. Liu, J. Mater. Sci. Technol. 33, 83 (2017)

    Google Scholar 

  6. C.F. Liang, C.J. Yu, W.T. Hou, J. Chin. Soc. Corros. Prot. 19, 36 (1999)

    CAS  Google Scholar 

  7. Y. Tsutsumi, A. Nishikata, T. Tsuru, Corros. Sci. 49, 1394 (2007)

    CAS  Google Scholar 

  8. Q. Yin, Z.Y. Wang, M.R. Liu, C. Pan, Acta Metall. Sin. (Engl. Lett.) 32, 780 (2019)

    CAS  Google Scholar 

  9. M.R. Liu, X. Lu, Q. Yin, C. Pan, C. Wang, Z.Y. Wang, Acta Metall. Sin. (Engl. Lett.) 32, 995 (2019)

    CAS  Google Scholar 

  10. M.X. Guo, C. Pan, Z.Y. Wang, W. Han, Acta Metall. Sin. 54, 65 (2018). (in Chinese)

    CAS  Google Scholar 

  11. Z.Y. Wang, G.C. Yu, W. Han, J. Chin. Soc. Corros. Prot. 24, 323 (2003)

    Google Scholar 

  12. M.P. Zheng, Foreign Depos. Geol. 3, 1 (1989)

    Google Scholar 

  13. M.P. Zheng, X.F. Liu, Acta Geol. Sin. 84, 1585 (2010)

    CAS  Google Scholar 

  14. Y.D. Xiao, G.Z. Wang, X.G. Li, A. Lin, S.P. Zhang, X.Z. Qin, Z.Y. Wang, C.F. Liang, Q.F. Zheng, H.R. Mao, J. Chin. Soc. Corros. Prot. 23, 248 (2003)

    CAS  Google Scholar 

  15. J. Wang, Z.Y. Wang, W. Ke, Corros. Eng., Sci. Technol. 47, 125 (2012)

    CAS  Google Scholar 

  16. B.B. Wang, Z.Y. Wang, W. Han, W. Ke, Corros. Sci. 59, 63 (2012)

    CAS  Google Scholar 

  17. J. Wang, Z.Y. Wang, W. Ke, Mater. Chem. Phys. 139, 225 (2013)

    CAS  Google Scholar 

  18. S.R. Street, N. Mi, A.J. Cook, H.B. Mohammed-Ali, L. Guo, T. Rayment, A.J. Davenport, Faraday Discuss. 180, 251 (2015)

    CAS  Google Scholar 

  19. T. Tsuru, A. Nishikata, J. Wang, Mater. Sci. Eng., A 198, 161 (1995)

    Google Scholar 

  20. A. Nishikata, Y. Yamashita, H. Katayama, T. Tsuru, A. Usami, Corros. Sci. 37, 2059 (1995)

    CAS  Google Scholar 

  21. T.V. Nam, E. Tada, A. Nishikata, J. Electrochem. Soc. 162, 419 (2015)

    Google Scholar 

  22. L.Y. Guo, S.R. Street, H.B. Mohammed-Ali, M. Ghahari, N. Mi, S. Glanvill, A. Du Plessis, C. Reinhard, T. Rayment, A.J. Davenport, Corros. Sci. 150, 110 (2019)

    CAS  Google Scholar 

  23. C.Q. Cheng, L.I. Klinkenberg, Y. Ise, J. Zhao, E. Tada, A. Nishikata, Corros. Sci. 118, 217 (2017)

    CAS  Google Scholar 

  24. B. Maier, G.S. Frankel, J. Electrochem. Soc. 157, 302 (2010)

    Google Scholar 

  25. S. Hastuty, A. Nishikata, T. Tsuru, Corros. Sci. 52, 2035 (2010)

    CAS  Google Scholar 

  26. E. Schindelholz, R.G. Kelly, I.S. Cole, W.D. Ganther, T.H. Muster, Corros. Sci. 67, 233 (2013)

    CAS  Google Scholar 

  27. W. Han, G.C. Yu, Z.Y. Wang, J. Wang, Corros. Sci. 49, 2920 (2007)

    CAS  Google Scholar 

  28. S. Liu, H. Sun, L.J. Sun, H.J. Fan, Corros. Sci. 65, 520 (2012)

    CAS  Google Scholar 

  29. I.M. Ahmed, M.S. Gasser, Appl. Surf. Sci. 259, 650 (2012)

    CAS  Google Scholar 

  30. G.G. Gou, P.H. Ma, Acta Phys.-Chim. Sin. 20, 1357 (2004)

    CAS  Google Scholar 

  31. S. Musić, S. Krehula, S. Popović, Mater. Lett. 58, 444 (2004)

    Google Scholar 

  32. V.R.L. Constantino, T.J. Pinnavaia, Inorg. Chem. 34, 883 (1995)

    CAS  Google Scholar 

  33. K.P. Wong, R.C. Alkire, J. Electrochem. Soc. 137, 3010 (1990)

    CAS  Google Scholar 

  34. J.O. Park, C.H. Paik, Y.H. Huang, R.C. Alkire, J. Electrochem. Soc. 146, 517 (1999)

    CAS  Google Scholar 

  35. W.J. Lorenz, F. Mansfeld, Corros. Sci. 21, 647 (1981)

    CAS  Google Scholar 

  36. M. Itagaki, R. Nozue, K. Watanabe, H. Katayama, K. Noda, Corros. Sci. 46, 1301 (2004)

    CAS  Google Scholar 

  37. K.W. Chung, K.B. Kim, Corros. Sci. 42, 517 (2000)

    CAS  Google Scholar 

  38. M.C. Yan, C. Sun, J. Xu, W. Ke, Ind. Eng. Chem. Res. 53, 17615 (2014)

    CAS  Google Scholar 

  39. Y.L. Cheng, Z. Zhang, F.H. Cao, J.F. Li, J.Q. Zhang, J.M. Wang, C.N. Cao, Corros. Sci. 46, 1649 (2004)

    CAS  Google Scholar 

  40. E. Schindelholz, B.E. Risteen, R.G. Kelly, J. Electrochem. Soc. 161, 460 (2014)

    Google Scholar 

  41. Z.Y. Chen, F. Cui, R.G. Kelly, J. Electrochem. Soc. 155, 360 (2008)

    Google Scholar 

  42. R.P. Vera Cruz, A. Nishikata, T. Tsuru, Corros. Sci. 38, 1397 (1996)

    CAS  Google Scholar 

  43. D.J. Cziczo, J.P.D. Abbatt, J. Phys. Chem. A 104, 2038 (2007)

    Google Scholar 

  44. Y. Gao, S.B. Chen, L.E. Yu, Atmos. Environ. 41, 2019 (2007)

    CAS  Google Scholar 

  45. D.D. Weis, G.E. Ewing, J. Geophys. Res.-Atmos. 104, 21275 (1999)

    CAS  Google Scholar 

  46. C. Pan, L. Liu, Y. Li, F.H. Wang, Corros. Sci. 73, 32 (2013)

    CAS  Google Scholar 

  47. P. Schmuki, H. Hildebrand, A. Friedrich, S. Virtanen, Corros. Sci. 47, 1239 (2005)

    CAS  Google Scholar 

  48. S.J. Zheng, Y.J. Wang, B. Zhang, Y.L. Zhu, C. Liu, P. Hu, X.L. Ma, Acta Mater. 58, 5070 (2010)

    CAS  Google Scholar 

  49. W.Y. Lv, C. Pan, W. Su, Z.Y. Wang, S.N. Liu, C. Wang, J. Mater. Eng. Perform. 24, 2597 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51601199 and 51671197) and by the Guangzhou Industry-university-research Collaborative Innovation Alliance Special Project (201604046014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Pan or Zhenyao Wang.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Yin, Q., Liu, M. et al. Corrosion Behavior of 304 Stainless Steel Exposed to a Simulated Salt Lake Atmosphere. Acta Metall. Sin. (Engl. Lett.) 33, 857–870 (2020). https://doi.org/10.1007/s40195-020-01028-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01028-w

Keywords

Navigation