Skip to main content
Log in

Effect of Different Scale Precipitates on Corrosion Behavior of Mg–10Gd–3Y–0.4Zr Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A large amount of directional and willow-like β′ phase was precipitated in Mg–10Gd–3Y–0.4Zr (GW103K) alloy after solution treatment and subsequently aged treatment (T6). In order to explore the effect of the precipitates on the corrosion behavior of the GW103K alloy, the alloy was subjected to solution treatment (T4) at 773 K for 4 h at first, subsequently aged at 498 K for 193 h (T6). The microstructure evolution of the GW103K alloy after this treatment was investigated by scanning electron microscopy and transmission electron microscopy. The high-angle annular detector dark-field scanning transmission electron microscopy was used to observe the typical corrosion morphologies of the nanoscale precipitation phases (β′) in the T6-treated alloy. The corrosion rate was measured by potentiodynamic polarization test. Combining with the potential measurement results by scanning Kelvin probe force microscopy, the effects of the skeleton-like Mg24(Gd, Y)5 and β′ precipitates on the corrosion behavior of GW103K alloy were explored. The results showed that the corrosion rate of the GW103K alloy in different conditions was ranked as: as-cast alloy> T4-treated alloy> T6-treated alloy, attributing to the fact that the relative potential differences of skeleton-like Mg24(Gd, Y)5 were lower than those of the matrix, therefore Mg24(Gd, Y)5 phase formed micro-galvanic coupling with the matrix and corrosion dissolution occurred. The nanoscale β′ precipitates in T6-treated alloy can retard the cathodic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851 (2008)

    Article  Google Scholar 

  2. S.B. Shen, S. Cai, X.G. Bao, P. Xu, Y. Li, S. Jiang, G.H. Xu, Chem. Eng. J. 339, 7 (2018)

    Article  Google Scholar 

  3. X.R. Chen, F.K. Ning, J. Hou, Q.C. Le, Y. Tang, Ultrason. Sonochem. 40, 433 (2018)

    Article  Google Scholar 

  4. X.W. Liu, Y. Liu, B. Jin, Y. Lu, J. Lu, J. Mater. Sci. Technol. 33, 224 (2017)

    Article  Google Scholar 

  5. L.P. Zhong, Y.J. Wang, M. Gong, X.W. Zheng, J. Peng, Mater. Charact. 138, 284 (2018)

    Article  Google Scholar 

  6. D.F. Zhang, X. Chen, F.S. Pan, L.Y. Jiang, G.S. Hu, D.L. Yu, Funct. Mater. 45, 05001 (2014)

    Google Scholar 

  7. R.L. Satet, M.J. Hoffmann, J. Am. Ceram. Soc. 88, 2485 (2005)

    Article  Google Scholar 

  8. Y.R. Wu, W.Y. Hu, L.X. Sun, J. Phys. D: Appl. Phys. 40, 7584 (2007)

    Google Scholar 

  9. L.L. Tang, Y.H. Zhao, R.K. Islamgaliev, R.Z. Valiev, Y.T. Zhu, J. Alloys Compd. 721, 577 (2017)

    Article  Google Scholar 

  10. Y. Gao, Q.D. Wang, J.H. Gu, Y. Zhao, Y. Tong, J.Y. Kaneda, J. Rare Earths 26, 298 (2008)

    Article  Google Scholar 

  11. X.B. Liu, R.S. Chen, E.H. Han, J. Alloys Compd. 465, 232 (2008)

    Article  Google Scholar 

  12. S.Q. Liang, D.K. Guan, X.P. Tan, L. Chen, Y. Tang, Mater. Sci. Eng., A 528, 1589 (2011)

    Article  Google Scholar 

  13. Q. Wang, L. Xiao, W.C. Liu, H.H. Zhang, W.D. Cui, Z.Q. Li, G.H. Wu, Mater. Sci. Eng., A 705, 402 (2017)

    Article  Google Scholar 

  14. S.Q. Liang, D.K. Guan, L. Chen, Z.H. Gao, H.X. Tang, X.T. Tong, R. Xiao, Mater. Des. 32, 361 (2011)

    Article  Google Scholar 

  15. H. Liu, Y. Gao, J.Z. Liu, Y.M. Zhu, Y. Wang, J.F. Nie, Acta Mater. 61, 453 (2013)

    Article  Google Scholar 

  16. D.K. Xu, E.H. Han, Y.B. Xu, Prog. Nat. Sci.-Mater. 26, 117 (2016)

    Article  Google Scholar 

  17. Y.X. Li, D. Qiu, Y.H. Rong, M.X. Zhang, Intermetallics 40, 45 (2013)

    Article  Google Scholar 

  18. J.X. Zheng, Z. Li, L.D. Tan, X.S. Xu, R.C. Luo, B. Chen, Mater. Charact. 117, 76 (2016)

    Article  Google Scholar 

  19. Y.C. Wan, H.C. Xiao, S.N. Jiang, B. Tang, C.M. Liu, Z.Y. Chen, L.W. Lu, Mater. Sci. Eng., A 617, 243 (2014)

    Article  Google Scholar 

  20. Y.W. Song, D.Y. Shan, E.H. Han, J. Mater. Sci. Technol. 33, 945 (2017)

    Article  Google Scholar 

  21. J.H. Liu, Y.W. Song, J.C. Chen, P. Chen, D.Y. Shan, E.H. Han, Electrochim. Acta 189, 190 (2016)

    Article  Google Scholar 

  22. L.M. Peng, J.W. Chang, X.W. Guo, A. Atrens, W.J. Ding, Y.H. Peng, J. Appl. Electrochem. 39, 913 (2009)

    Article  Google Scholar 

  23. S.Q. Liang, D.K. Guan, X.P. Tan, Mater. Des. 32, 1194 (2011)

    Article  Google Scholar 

  24. J.Z. Zhang, Z.X. Ma, D.F. Li, Mater. Heat Treat. 38, 73 (2007)

    Google Scholar 

  25. K. Zhang, X.G. Li, Y.J. Li, M.L. Ma, Trans. Nonferrous. Met. Soc. China 18, 12 (2008)

    Article  Google Scholar 

  26. X.M. Zhang, Z.Y. Mu, Y.L. Deng, C.P. Tang, L.Q. Guan, J. Sci. Technol. 44, 2223 (2013)

    Google Scholar 

  27. J. Zhao, J.P. Li, Y.C. Guo, Z. Yang, Y.M. Yang, M.X. Liang, Rare Met. Mater. Eng. 37, 281 (2008)

    Google Scholar 

  28. L.Y. Wang, J. Huang, J. Dong, K. Feng, Y.X. Wu, P.K. Chu, Mater. Charact. 118, 486 (2016)

    Article  Google Scholar 

  29. T. Honma, T. Ohkubo, K. Hono, S. Kamado, Mater. Sci. Eng., A 395, 301 (2005)

    Article  Google Scholar 

  30. C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch, Acta Mater. 51, 5335 (2003)

    Article  Google Scholar 

  31. J.X. Zheng, X.S. Xu, K.Y. Zhang, B. Chen, Mater. Lett. 152, 287 (2015)

    Article  Google Scholar 

  32. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, J. Alloys Compd. 421, 309 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 51531007), the Natural Science Foundation of Inner Mongolia (No. 2016MS0538) and the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) (No. KF160408). The authors are grateful to Dr. Ping Qiu for modification in English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Ling Jia.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Jia, RL., Zhang, T. et al. Effect of Different Scale Precipitates on Corrosion Behavior of Mg–10Gd–3Y–0.4Zr Alloy. Acta Metall. Sin. (Engl. Lett.) 32, 433–442 (2019). https://doi.org/10.1007/s40195-018-0792-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0792-7

Keywords

Navigation