Skip to main content
Log in

Effects of Deformation Texture and Twins on the Corrosion Resistance of Rolled AZ31 Mg Alloy Under 5% Uniaxial Compression

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The deformation texture and twin effect of rolled AZ31 Mg alloy on the corrosion resistance in simulated body fluid (SBF) at room temperature were examined by potentiodynamic polarization and electrochemical impedance spectra. The corrosion morphology evolution after being immersed in SBF for 24 h has been analyzed by scanning electron microscope. The results show that the inhomogeneous deformation leaded to the obvious differences in the microstructure. The corrosion rate of rolled AZ31 Mg alloy decreased dramatically in the transverse direction (TD) plane, which mainly consisted of {0001} deformation texture, making TD plane be a lower surface energy, and thus a higher corrosion resistance, while the corrosion resistance of the plane with 45° to TD direction (45TD plane) containing enormous {10−12} tension twins decreased after 5% uniaxial compression. The {10−12} tension twins accelerate the rate of corrosion procedure and pitting corrosion. Moreover, it is suggested that the deformation texture affects the corrosion behavior more than the twins do. This study indicates that the corrosion rate of AZ31 Mg alloy in SBF can be modified by the small uniaxial compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728 (2006)

    Article  Google Scholar 

  2. R.L. Xin, Y.M. Luo, A.L. Zuo, J.C. Gao, Q. Liu, Mater. Lett. 72, 1 (2012)

    Article  Google Scholar 

  3. Y. Snir, G. Ben-Hamu, D. Eliezer, E. Abramov, J. Alloys Compd. 528, 84 (2012)

    Article  Google Scholar 

  4. H.C. Pan, F.H. Wang, L. Jin, M.L. Feng, J. Doug, J. Mater. Sci. Technol. 32, 1282 (2016)

    Article  Google Scholar 

  5. G.L. Song, R. Mishra, Z.Q. Xu, Electrochem. Commun. 12, 1009 (2010)

    Article  Google Scholar 

  6. Renlong Xin, Bo Li, Ling Li, Qing Liu, Mater. Des. 32, 4548 (2011)

    Article  Google Scholar 

  7. N.N. Aung, W. Zhou, Corros. Sci. 52, 589 (2010)

    Article  Google Scholar 

  8. M. Ascencio, M. Pekguleryuz, S. Omanovic, Corros. Sci. 87, 489 (2014)

    Article  Google Scholar 

  9. M. Ascencio, M. Pekguleryuz, S. Omanovic, Corros. Sci. 91, 297 (2015)

    Article  Google Scholar 

  10. S.-H. Choi, E.J. Shin, B.S. Seong, Acta Mater. 55, 4181 (2007)

    Article  Google Scholar 

  11. B.S. Wang, L.P. Deng, C. Adrien, N. Guo, Z.R. Xu, Q. Li, Mater. Charact. 108, 42 (2015)

    Article  Google Scholar 

  12. B.S. Wang, L.P. Deng, N. Guo, Z.R. Xu, Q. Li, Mater. Charact. 98, 180 (2014)

    Article  Google Scholar 

  13. M.D. Nave, M.R. Barnett, Scr. Mater. 51, 881 (2004)

    Article  Google Scholar 

  14. B. Song, R.L. Xin, G. Chen, X.Y. Zhang, Q. Liu, Scr. Mater. 66, 1061 (2012)

    Article  Google Scholar 

  15. J. Jiang, A. Godfrey, W. Liu, Q. Liu, Scr. Mater. 58, 122 (2008)

    Article  Google Scholar 

  16. S.G. Hong, S.H. Park, C.S. Lee, Acta Mater. 58, 5873 (2010)

    Article  Google Scholar 

  17. J.R. Dong, D.F. Zhang, J. Sun, Q.W. Dai, F.S. Pan, J. Mater. Sci. Technol. 31, 935 (2015)

    Article  Google Scholar 

  18. T. Kokubo, H. Takadama, Biomaterials 27, 2907–2915 (2006)

    Article  Google Scholar 

  19. B.M. Wilke, L. Zhang, JOM 68, 1701 (2016)

    Article  Google Scholar 

  20. B. Niu, P. Shi, D.H. Wei, E. Shanshan, Q. Li, Y. Chen, J. Alloys Compd. 665, 435 (2016)

    Article  Google Scholar 

  21. ASTM G31-72(2004), Standard Practice for Laboratory Immersion Corrosion Testing of Metals (ASTM International, West Conshohocken, PA, 2004). www.astm.org. doi:10.1520/G0031-72R04

  22. S.H. Choi, B.J. Kim, S.I. Kim, U.S. Yoon, Mater. Sci. Forum 539–543, 1713 (2007)

    Article  Google Scholar 

  23. M.R. Barnett, Mater. Sci. Eng., A 464, 1 (2007)

    Article  Google Scholar 

  24. Z. Shi, M. Liu, A. Atrens, Corros. Sci. 52, 579 (2010)

    Article  Google Scholar 

  25. C.J. Wang, B.L. Jiang, M. Liu, Y.F. Ge, J. Alloys Compd. 621, 53 (2015)

    Article  Google Scholar 

  26. L.C. Zhao, C.X. Cui, Q.Z. Wang, S.J. Bu, Corros. Sci. 52, 2228 (2010)

    Article  Google Scholar 

  27. P. Su, X. Wu, Y. Guo, Z. Jiang, J. Alloys Compd. 475, 773 (2009)

    Article  Google Scholar 

  28. G.D. Zou, Q.M. Peng, Y.N. Wang, B.Z. Liu, J. Alloys Compd. 618, 44 (2015)

    Article  Google Scholar 

  29. H.P. Duan, K.Q. Du, C.W. Yan, F.H. Wang, Electrochim. Acta 51, 2898 (2006)

    Article  Google Scholar 

  30. H. Duan, C. Yan, F. Wang, Electrochim. Acta 52, 3785 (2007)

    Article  Google Scholar 

  31. T.S. Lim, H.S. Ryu, S.H. Hong, Corros. Sci. 62, 104 (2012)

    Article  Google Scholar 

  32. A.S. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, S.V. Gnedenkov, Corros. Sci. 102, 348 (2016)

    Article  Google Scholar 

  33. S. Zhang, Q. Li, B. Chen, X. Yang, Electrochim. Acta 55, 870 (2010)

    Article  Google Scholar 

  34. M. Liu, D. Qiu, M.C. Zhao, G. Song, A. Atrens, Scr. Mater. 58, 421 (2008)

    Article  Google Scholar 

  35. B.J. Wang, D.K. Xu, J.H. Dong, W. Ke, J. Mater. Sci. Technol. 32, 646 (2016)

    Article  Google Scholar 

  36. B.Q. Fu, W. Liu, Z.L. Li, Appl. Surf. Sci. 255, 8511 (2009)

    Article  Google Scholar 

  37. Y.C. Zhao, G.S. Huang, G.G. Wang, T.Z. Han, F.S. Pan, Acta Metall. Sin. (Engl. Lett.) 28, 1387 (2015)

    Article  Google Scholar 

  38. J. Chen, J.Q. Wang, E.H. Han, W. Kea, D.W. Shoesmith, Acta Metall. Sin. (Engl. Lett.) 29, 1 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51301040 and 51501040), the China Postdoctoral Science Foundation (Grant No. 2016M590591) and the Natural Science Foundation of Fujian Province of China (Grant Nos. 2016J01215 and 2017J01477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Shu Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ding, H., Wang, BS. et al. Effects of Deformation Texture and Twins on the Corrosion Resistance of Rolled AZ31 Mg Alloy Under 5% Uniaxial Compression. Acta Metall. Sin. (Engl. Lett.) 30, 921–930 (2017). https://doi.org/10.1007/s40195-017-0639-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0639-7

Keywords

Navigation