Skip to main content
Log in

Microstructural Depictions of Austenite Dynamic Recrystallization in a Low-Carbon Steel: A Cellular Automaton Model

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A mesoscopic cellular automaton model that takes into account grain deformation during hot deformation has been developed to quantitatively depict the microstructural evolution of the austenite dynamic recrystallization (DRX) in a low-carbon steel. Both the grain deformation and the concept of DRX cycle are introduced, allowing accurate depictions of the grain structures, the overall microstructural properties and the flow stress evolutions that involving in the austenite DRX. The simulation results are compared with the experimental results and the predictions by the macroscopic DRX model and are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Weng, Ultra-Fine Grained Steel (Springer, NewYork, 2003), pp. 53–82

    Google Scholar 

  2. M. Militzer, ISIJ Int. 47, 1 (2001)

    Article  Google Scholar 

  3. C.M. Sellars, J.A. Whiteman, Met. Sci. 13, 187 (1979)

    Article  Google Scholar 

  4. Y. Saito, T. Tanaka, T. Sekine, H. Nishizaki, in High Strength Low Alloy Steels, ed. by D.P. Dunne, T. Chandra (University of Wollongong, Wollongong, 1984), p. 28

    Google Scholar 

  5. K. Esaka, J. Wakita, M. Takahashi, O. Kawano, S. Harada, Seitetsu–Kenkyu 321, 92 (1986)

    Google Scholar 

  6. M. Suehiro, K. Sato, Y. Tsukano, H. Yata, T. Senuma, Y. Matsumura, Trans. Iron Steel Inst. Jpn. 27, 439 (1987)

    Article  Google Scholar 

  7. M. Militzer, E.B. Hawbolt, T.R. Meadowcroft, Metall. Mater. Trans. A 31, 1247 (2000)

    Article  Google Scholar 

  8. P. Choquet, P. Fabregue, J. Giusti, B. Chamont, J. N. Pezant, F. Blanchet, in Proceedings of International Conference on Mathematical Modelling of Hot Rolling of Steel, ed. by S. Yue (CIMM, Hamilton, 1990), p. 34

  9. P.D. Hodgson, R.K. Gibbs, ISIJ Int. 32, 1329 (1992)

    Article  Google Scholar 

  10. D. Raabe, Computational Materials Science (Wiley-VCH, Weinheim, 1998), pp. 177–231

    Book  Google Scholar 

  11. K.G.F. Janssens, Math. Comput. Simul. 80, 1361 (2010)

    Article  Google Scholar 

  12. R.L. Goetz, V. Seetharaman, Scr. Mater. 38, 405 (1998)

    Article  Google Scholar 

  13. R. Ding, Z.X. Guo, Acta Mater. 49, 3163 (2001)

    Article  Google Scholar 

  14. G. Kugler, R. Turk, Acta Mater. 52, 4659 (2004)

    Article  Google Scholar 

  15. N. Yazdipour, C.H.J. Davies, P.D. Hodgson, Comput. Mater. Sci. 44, 566 (2008)

    Article  Google Scholar 

  16. N.M. Xiao, C.W. Zheng, D.Z. Li, Y.Y. Li, Comput. Mater. Sci. 41, 366 (2008)

    Article  Google Scholar 

  17. Z.Y. Jin, Z.S. Cui, J. Mater. Sci. Technol. 26, 1063 (2010)

    Article  Google Scholar 

  18. F. Chen, Z.S. Cui, J. Liu, X.X. Zhang, W. Chen, Model. Simul. Mater. Sci. Eng. 17, 075015 (2009)

    Article  Google Scholar 

  19. H.W. Lee, Y.T. Im, Int. J. Mech. Sci. 52, 1277 (2010)

    Article  Google Scholar 

  20. H. Hallberg, M. Wallin, M. Ristinma, Comput. Mater. Sci. 49, 25 (2010)

    Article  Google Scholar 

  21. Y.X. Liu, Y.C. Lin, H.B. Li, D.X. Wen, X.M. Chen, M.S. Chen, Mater. Sci. Eng., A 626, 432 (2015)

    Article  Google Scholar 

  22. W. Roberts, B. Ahlblom, Acta Metall. 26, 801 (1978)

    Article  Google Scholar 

  23. S. Takeuchi, A.S. Argon, J. Mater. Sci. 11, 1542 (1976)

    Article  Google Scholar 

  24. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), pp. 121–124

    Book  Google Scholar 

  25. W. Read, W. Shockley, Phys. Rev. 78, 275 (1950)

    Article  Google Scholar 

  26. C.H.J. Davies, Scr. Mater. 36, 35 (1997)

    Article  Google Scholar 

  27. H. Mecking, U.F. Kocks, Acta Metall. 29, 1865 (1981)

    Article  Google Scholar 

  28. N. Hatta, J.I. Kokado, S. Kikuchi, H. Takuda, Steel Res. 56, 575 (1985)

    Google Scholar 

  29. C.W. Zheng, N.M. Xiao, D.Z. Li, Y.Y. Li, Comput. Mater. Sci. 44, 507 (2008)

    Article  Google Scholar 

  30. S.B. Singh, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 14, 832 (1998)

    Article  Google Scholar 

  31. T. Takaki, Y. Hisakuni, T. Hirouchi, A. Yamanaka, Y. Tomita, Comput. Mater. Sci. 45, 881 (2009)

    Article  Google Scholar 

  32. R.Z. Wang, Z.M. Yang, Y.M. Che, J. Iron Steel Res. 18, 28 (2006)

    Google Scholar 

Download references

Acknowledgements

The author C.W. Zheng gratefully acknowledges the financial supports from the National Natural Science Foundation of China (NSFC) under Grant Nos. 51401214 and 51371169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Wu Zheng.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zheng, CW., Zhang, XG. et al. Microstructural Depictions of Austenite Dynamic Recrystallization in a Low-Carbon Steel: A Cellular Automaton Model. Acta Metall. Sin. (Engl. Lett.) 29, 1127–1135 (2016). https://doi.org/10.1007/s40195-016-0502-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0502-2

Keywords

Navigation