Skip to main content
Log in

Analysis and Modeling of Friction Stir Processing-Based Crack Repairing in 2024 Aluminum Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A friction stir processing-based method was used to repair cracks in the 2024 aluminum alloy plates. The temperature field and plastic material flow pattern were analyzed on the basis of experimental and finite element simulation results. Microstructure and tensile properties of the repaired specimens were studied. The results showed that the entire crack repairing was a solid-phase process and plastic materials tended to flow toward the shoulder center and then resulted in the repairing of cracks. Meanwhile, the coarse grain structures were refined in repaired zone (RZ), while the grains in thermal–mechanically affected zone and heat-affected zone were elongated and driven to grow up. Meanwhile, large phases are crushed into small particles and dispersed inside the RZ. Finally, the strength of the repaired specimens can be restored dramatically and their ductility can be partially restored. After heat treatment, the tensile properties of the repaired specimens can be further enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.P. Zhu, Q. Lei, H.Z. Huang, Y.J. Yang, W.W. Peng, Int. J. Damage Mech. (2016). doi:10.1177/1056789516651920

    Google Scholar 

  2. M.D. Sangid, Int. J. Fatigue 57, 58 (2013)

    Article  Google Scholar 

  3. J.Y. Wang, H. Soens, W. Verstraete, N.D. Belie, Cement Concer. Res. 56, 139 (2014)

    Article  Google Scholar 

  4. K.W. Nam, E.S. Kim, Mater. Sci. Eng. A 547, 125 (2012)

    Article  Google Scholar 

  5. M.M. Escobar, S. Vago, A. Vázquez, Compos. Part B Eng. 55, 203 (2013)

    Article  Google Scholar 

  6. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram, E.N. Brown, S. Viswanathan, Nature 409, 794 (2001)

    Article  Google Scholar 

  7. X.X. Chen, A.D. Matheus, O. Kanji, M. Ajit, H.B. Shen, R.N. Steven, K. Sheran, F. Wudl, Science 295, 1698 (2002)

    Article  Google Scholar 

  8. R.P. Wool, Soft Matter 4, 400 (2008)

    Article  Google Scholar 

  9. R.N. Lumley, I.J. Polmear, in Proceedings of the First International Conference on Self-Healing Materials, Noordwijk aan Zee, The Netherlands, April 18–20, 2007

  10. N. Shinya, J. Kyono, K. Laha, in Proceedings of the First International Conference on Self-Healing Materials, Noordwijk aan Zee, The Netherlands, April 18–20, 2007

  11. S. Hautakangas, H. Schut, N.H.V. Dijk, P.E.J. Rivera, D. del Castillo, S.V.D. Zwaag, Scr. Mater. 58, 719 (2008)

    Article  Google Scholar 

  12. A. Hosoi, T. Nagahama, Y. Ju, Mater. Sci. Eng. A 533, 38 (2012)

    Article  Google Scholar 

  13. J.W. Murray, A.T. Clare, J. Mater. Process. Technol. 212, 2642 (2012)

    Article  Google Scholar 

  14. X.G. Zheng, Y.N. Shi, K. Lu, Mater. Sci. Eng. A 561, 52 (2013)

    Article  Google Scholar 

  15. L. Giraud, H. Robe, C. Claudin, C. Desrayaud, P. Bocher, E. Feulvarch, J. Mater, Process. Technol. 235, 220 (2016)

    Article  Google Scholar 

  16. M. Narimani, B. Lotfi, Z. Sadeghian, Mater. Sci. Eng. A 673, 436 (2016)

    Article  Google Scholar 

  17. O.O. Tinubu, S. Das, A. Dutt, J.E. Mogonye, V. Ageh, R. Xu, J. Forsdike, R.S. Mishra, T.W. Scharf, Wear 356–357, 94 (2016)

    Article  Google Scholar 

  18. Z.W. Li, Y.M. Yue, S.D. Ji, P. Chai, L. Wang, Mater. Des. 94, 368 (2016)

    Google Scholar 

  19. Z. Zhang, B.L. Xiao, Z.Y. Ma, Mater. Charact. 106, 255 (2015)

    Article  Google Scholar 

  20. Z.H. Zhang, W.Y. Li, Y. Feng, J.L. Li, Y.J. Chao, Acta Mater. 92, 117 (2015)

    Article  Google Scholar 

  21. X.C. Liu, C.S. Wu, J. Mater. Process. Technol. 225, 32 (2015)

    Article  Google Scholar 

  22. K.S. Arora, S. Pandey, M. Schaper, R. Kumar, J. Mater. Sci. Technol. 26, 747 (2010)

    Article  Google Scholar 

  23. H. Aydın, A. Bayram, D. İsmail, Mater. Des. 31, 2568 (2010)

    Article  Google Scholar 

  24. J. Wang, R. Fu, Y. Li, J. Zhang, Mater. Sci. Eng. A 609, 147 (2014)

    Article  Google Scholar 

  25. A. Simar, Y. Bréchet, B.D. Meester, A. Denquin, C. Gallais, Prog. Mater. Sci. 57, 95 (2012)

    Article  Google Scholar 

  26. H. Aydın, A. Bayram, A. Uğuz, K.S. Akay, Mater. Des. 30, 2211 (2009)

    Article  Google Scholar 

  27. Z. Hu, S. Yuan, X. Wang, Y. Huang, Mater. Des. 32, 5055 (2011)

    Article  Google Scholar 

  28. Z. Li, Y. Yue, S. Ji, P. Chai, Z. Zhou, Mater. Des. 90, 238 (2015)

    Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the National Natural Science Foundation of China (Grant No. 51405309) and the Natural Science Foundation of Liaoning Province (Grant No. 2015020183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, JG., Wang, L., Xu, DK. et al. Analysis and Modeling of Friction Stir Processing-Based Crack Repairing in 2024 Aluminum Alloy. Acta Metall. Sin. (Engl. Lett.) 30, 228–237 (2017). https://doi.org/10.1007/s40195-016-0489-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0489-8

Keywords

Navigation