Skip to main content

Advertisement

Log in

Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Creep behavior of Super304H austenitic steel has been investigated at elevated temperatures of 923–973 K and at applied stress of 190–210 MPa. The results show that the apparent stress exponent and activation energy in the creep deformation range from 16.2 to 27.4 and from 602.1 to 769.3 kJ/mol at different temperatures, respectively. These high values imply the presence of a threshold stress due to an interaction between the dislocations and Cu-rich precipitates during creep deformation. The creep mechanism is associated with the dislocation climbing governed by the matrix lattice diffusion. The origin of the threshold stress is mainly attributed to the coherency strain induced in the matrix by Cu-rich precipitates. The theoretically estimated threshold stresses from Cu-rich precipitates agree reasonably with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Sawaragi, S. Hirano, in Mechanical Behaviour of Materials, ed. by M. Jono, T. Inone (Pergamon Press, London, 1992), pp. 589–594

    Google Scholar 

  2. R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, R. Purgert, J. Mater. Eng. Perform. 14, 281 (2005)

    Article  Google Scholar 

  3. C.Y. Chi, H.Y. Yu, J.X. Dong, W.Q. Liu, S.C. Cheng, Z.D. Liu, X.S. Xie, Prog. Nat. Sci. 22, 175 (2012)

    Article  Google Scholar 

  4. C.Y. Chi, H.Y. Yu, J.X. Dong, X.S. Xie, Z.Q. Cui, X.F. Chen, F.S. Lin, Acta Metall. Sin. (Engl. Lett.) 24, 141 (2011)

    Google Scholar 

  5. P. Ou, H. Xing, X.L. Wang, J. Sun, Mater. Sci. Eng. A 600, 171 (2014)

    Article  Google Scholar 

  6. P. Ou, H. Xing, X.L. Wang, J. Sun, Z.Q. Cui, C.S. Yang, Metall. Mater. Trans. A 46, 3909 (2015)

    Article  Google Scholar 

  7. E.A. Marquis, D.C. Dunand, Scr. Mater. 47, 503 (2002)

    Article  Google Scholar 

  8. C.B. Fuller, D.N. Seidman, D.C. Dunand, Acta Mater. 51, 4803 (2003)

    Article  Google Scholar 

  9. M.E. Krug, D.C. Dunand, Acta Mater. 59, 5125 (2011)

    Article  Google Scholar 

  10. P. Zhang, Scr. Mater. 52, 277 (2005)

    Article  Google Scholar 

  11. D.V.V. Satyanarayana, G. Malakondaiah, D.S. Sarma, Mater. Sci. Eng. A 323, 119 (2002)

    Article  Google Scholar 

  12. W.G. Zhao, J.G. Wang, H.L. Zhao, D.M. Yao, Q.C. Jiang, Mater. Sci. Eng. A 515, 10 (2009)

    Article  Google Scholar 

  13. V.C. Nardone, J.R. Strife, Metall. Trans. A 18, 109 (1987)

    Article  Google Scholar 

  14. F.A. Mohamed, K.T. Park, E.J. Lavernia, Mater. Sci. Eng. A 150, 21 (1992)

    Article  Google Scholar 

  15. J. Čadek, H. Oikawa, V. Šustek, Mater. Sci. Eng. A 190, 9 (1995)

    Article  Google Scholar 

  16. R.S. Mishra, A.B. Pandey, A.K. Mukherjee, Mater. Sci. Eng. A 201, 205 (1995)

    Article  Google Scholar 

  17. K.T. Park, E.J. Lavernia, F.A. Mohamed, Acta Metall. Mater. 38, 2149 (1990)

    Article  Google Scholar 

  18. P.L. Threadgill, B. Wilshire, Creep Strength in Steel and High Temperature Alloys (The Metal Society, London, 1972), p. 8

    Google Scholar 

  19. J. Čadek, Creep in Metallic Materials (Elsevier, Amsterdam, 1988)

    Google Scholar 

  20. F.R.N. Nabarro, H.L. Villiers, The Physics of Creep: Creep and Creep-resistant Alloys (Taylor & Francis, London, 1995)

    Google Scholar 

  21. K.E. Knipling, D.C. Dunand, Scr. Mater. 59, 387 (2008)

    Article  Google Scholar 

  22. P. Ou, J. Sun, Z.Q. Cui, C.S. Yang, Trans. Mater. Heat Treat. 35, 85 (2014). (in Chinese)

    Google Scholar 

  23. Z.Y. Ma, S.C. Tjong, X.M. Meng, J. Mater. Res. 17, 2307 (2002)

    Article  Google Scholar 

  24. J. Weertman, J. Appl. Phys. 26, 1213 (1955)

    Article  Google Scholar 

  25. H.C. Yang, Dongfang Boiler 2, 13 (2003). (in Chinese)

    Google Scholar 

  26. F.R. Beckitt, T.M. Banks, T. Gladman, Creep Strength in Steel and High-Temperature Alloys (The Metals Society, London, 1974)

    Google Scholar 

  27. H.J. Frost, M.F. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, London, 1982)

    Google Scholar 

  28. Y. Li, T.G. Langdon, Acta Mater. 45, 4797 (1997)

    Article  Google Scholar 

  29. M.A. Morris, Philos. Mag. A 65, 943 (1992)

    Article  Google Scholar 

  30. R. Kaibyshev, F. Musin, E. Avtokratova, E. Motohashi, Mater. Sci. Eng. A 392, 373 (2005)

    Article  Google Scholar 

  31. E. Nembach, Particle Strengthening of Metals and Alloys (Wiley, New York, 1997)

    Google Scholar 

  32. A.I. Karasevskii, V.V. Lubashenko, Phys. Status Solidi B 241, 1274 (2004)

    Article  Google Scholar 

  33. S.Y. Liem, G. Kresse, J.H.R. Clarke, Surf. Sci. 415, 194 (1998)

    Article  Google Scholar 

  34. X.M. Li, Y. Zou, Z.W. Zhang, Z.D. Zou, Mater. Trans. 51, 305 (2010)

    Article  Google Scholar 

  35. L. Ren, L. Nan, K. Yang, Mater. Des. 32, 2374 (2011)

    Article  Google Scholar 

  36. Q.F. Ma, R.S. Fang, L.C. Xiang, S. Guo, Handbook of Thermophysical Properties (China Agricultural Machine Press, Beijing, 1986). (in Chinese)

    Google Scholar 

  37. F.L. Yaggee, E.R. Gilbert, J.W. Styles, J. Less-Comm. Met. 19, 39 (1969)

    Article  Google Scholar 

  38. T. Kunimine, T. Aragaki, T. Fujii, S. Onaka, M. Kato, J. Mater. Sci. 46, 4302 (2011)

    Article  Google Scholar 

  39. J.W. Martin, Precipitation Hardening, 2nd edn. (Butterworth-Heinemann, Oxford, 1998), pp. 79–98

    Book  Google Scholar 

  40. D.B. Park, S.M. Hong, K.H. Lee, M.Y. Huh, J.Y. Suh, S.C. Lee, W.S. Jung, Mater. Charact. 93, 52 (2014)

    Article  Google Scholar 

  41. D.B. Park, M.Y. Huh, W.S. Jung, J.Y. Suh, J.H. Shim, S.C. Lee, J. Alloys Compd. 574, 532 (2013)

    Article  Google Scholar 

  42. P. Ou, H. Xing, J. Sun, Metall. Mater. Trans. A 46, 1 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 50931003) and the Shanghai Science and Technology Committee (No. 13dz2260300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, P., Li, L., Xie, XF. et al. Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures. Acta Metall. Sin. (Engl. Lett.) 28, 1336–1343 (2015). https://doi.org/10.1007/s40195-015-0331-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0331-8

Keywords

Navigation