Skip to main content

Advertisement

Log in

Microstructure Characterization and Fracture Toughness of Laves Phase-Based Cr–Nb–Ti Alloys

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Three Laves phase-based alloys with nominal compositions of Cr2Nb–xTi (x = 20, 30, 40, in at%) have been prepared through vacuum non-consumable arc melting. The results show that the microstructures of Cr2Nb-(20, 30) Ti alloys are composed of the primary Laves phase C15–Cr2(Nb,Ti) and bcc solid solution phase, while the microstructure of Cr2Nb–40Ti alloy is developed with the eutectic phases C15–Cr2(Nb,Ti)/bcc solid solution. The measured fracture toughness of ternary Laves phase C15–Cr2(Nb,Ti) is about 3.0 MPa m1/2, much larger than 1.4 MPa m1/2 for binary Laves phase Cr2Nb. Meanwhile, the fracture toughness of Cr2Nb–xTi (x = 20, 30, 40) alloys increases with increasing Ti content and reaches 10.6 MPa m1/2 in Cr2Nb–40Ti alloy. The eutectic microstructure and addition of Ti in Cr2Nb are found to be effective in toughening Laves phase-based alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. Takeyama, C.T. Liu, Mater. Sci. Eng. A 132, 61 (1991)

    Article  Google Scholar 

  2. A.V. Kazantzis, M. Aindow, I.P. Jones, G.K. Triantafyllidis, Acta Mater. 55, 1873 (2007)

    Article  Google Scholar 

  3. H.Z. Zheng, S.Q. Lu, J.Y. Zhu, G.M. Liu, Int. J. Refract. Met. Hard Mater. 27, 659 (2009)

    Article  Google Scholar 

  4. K.W. Li, S.M. Li, S.X. Zhao, H. Zhong, Y.L. Xue, Acta Metall. Sin. (Engl. Lett) 26, 687 (2013)

    Article  Google Scholar 

  5. T. Takasugi, M. Yoshida, J. Mater. Res. 13, 2505 (1998)

    Article  Google Scholar 

  6. K.W. Li, S.M. Li, Y.L. Xue, H.Z. Fu, Int. J. Refract. Met. Hard Mater. 36, 154 (2013)

    Article  Google Scholar 

  7. Y.L. Hu, L.C. Zhang, D. Shuman, B.D. Huey, M. Aindow, Scr. Mater. 60, 309 (2009)

    Article  Google Scholar 

  8. M. Yoshida, T. Takasugi, Mater. Sci. Eng. A 224, 77 (1997)

    Article  Google Scholar 

  9. C.L. Li, J. Kuo, B. Wang, R. Wang, Intermetallics 18, 65 (2010)

    Article  Google Scholar 

  10. S.Q. Lu, H.Z. Zheng, L.P. Deng, J. Yao, Mater. Des. 51, 432 (2013)

    Article  Google Scholar 

  11. C.L. Li, B. Wang, Y.S. Li, R. Wang, Intermetallics 17, 394 (2009)

    Article  Google Scholar 

  12. M. Yoshida, T. Takasugi, Mater. Sci. Eng. A 262, 107 (1999)

    Article  Google Scholar 

  13. X. Xuan, S.Q. Lu, X.J. Dong, M.G. Huang, J.W. Liu, Adv. Mater. Res. 328–330, 1102 (2010)

    Google Scholar 

  14. K.S. Chan, D.L. Davidson, Metall. Mater. Trans. A 34, 1833 (2003)

    Article  Google Scholar 

  15. K.S. Chan, D.L. Davidson, D.L. Anton, Metall. Mater. Trans. A 28, 1797 (1997)

    Article  Google Scholar 

  16. K.S. Chan, Mater. Sci. Eng. A 329–331, 513 (2002)

    Article  Google Scholar 

  17. J.J. Petrovic, A.K. Vasudevan, Mater. Sci. Eng. A 261, 1 (1999)

    Article  Google Scholar 

  18. D.L. Davidson, K.S. Chan, D.L. Anton, Metall. Mater. Trans. A 27, 3007 (1996)

    Article  Google Scholar 

  19. V.N. Svechnikov, Y.A. Kocherzhinsky, V.I. Latysheva, V.M. Pan, Sb. Nauchn. Tr. Inst. Metallofiz. 16, 128 (1962)

    Google Scholar 

  20. Sanboh Lee, P.K. Liaw, C.T. Liu, Y.T. Chou. Mater. Sci. Eng., A 268, 184 (1999)

    Article  Google Scholar 

  21. C. Jiang, Acta Mater. 55, 1599 (2007)

    Article  Google Scholar 

  22. D.J. Thoma, K.A. Nibur, K.C. Chen, J.C. Cooley, L.B. Dauelsberg, W.L. Hults, P.G. Kotula, Mater. Sci. Eng. A 329–331, 408 (2002)

    Article  Google Scholar 

  23. C.T. Liu, P.F. Tortorelli, J.A. Horton, C.A. Carmichael, Mater. Sci. Eng. A 214, 23 (1996)

    Article  Google Scholar 

  24. D.J. Thoma, F. Chu, P. Peralta, P.G. Kotula, K.C. Chen, T.E. Mitchell, Mater. Sci. Eng. A 239–240, 251 (1997)

    Article  Google Scholar 

  25. Z. Li, L.M. Peng, Acta Mater. 55, 6573 (2007)

    Article  Google Scholar 

  26. A. Khan, H.M. Chan, M.P. Harmer, J. Am. Ceram. Soc. 83, 833 (2000)

    Article  Google Scholar 

  27. D. Sciti, G. Celotti, G. Pezzotti, S. Guicciardi, Appl. Phys. A 86, 243 (2007)

    Article  Google Scholar 

  28. D.L. Davidson, K.S. Chan, Metall. Mater. Trans. A 33, 401 (2002)

    Article  Google Scholar 

  29. X. Xiao, S.Q. Lu, X.J. Dong, M.G. Huang, J.W. Liu, Adv. Mater. Res. 328–330, 1102 (2011)

    Article  Google Scholar 

  30. W.Y. Kim, H. Tanaka, A. Kasama, S. Hanada, Intermetallics 9, 827 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51074127 and 51104120) and the SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Ming Li.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, YL., Li, SM., Zhong, H. et al. Microstructure Characterization and Fracture Toughness of Laves Phase-Based Cr–Nb–Ti Alloys. Acta Metall. Sin. (Engl. Lett.) 28, 514–520 (2015). https://doi.org/10.1007/s40195-015-0227-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0227-7

Keywords

Navigation