Skip to main content
Log in

Preparation of N-Doped Bi2WO6 Microspheres for Efficient Visible Light-Induced Photocatalysis

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The N-doped bismuth tungstate (Bi2WO6) photocatalysts with high visible light activity were prepared by the hydrothermal method using urea as a nitrogen source. The as-prepared N-doped Bi2WO6 samples were characterized by X-ray diffraction, scanning electron microscopy, specific surface area, photocurrent analysis, and UV–Vis diffuse reflectrance spectroscopy. The photocatalytic activity was evaluated by photocatalytic degradation of rhodamine B (RhB) solution under visible light irradiation. The photocatalytic mechanisms were analyzed by active species trapping experiments which revealed that the holes were the main active species of N-doped Bi2WO6 products in aqueous solution under visible light irradiation, rather than ·OH and O •−2 . With the assistance of H2O2, the photocatalytic activity for degradation of RhB could be further improved because H2O2 reacted with conduction band electrons to generate more hydroxyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Bag, P. Trikalitis, P. Chupas, G. Armatas, M. Kanatzidis, Science 317, 490 (2007)

    Article  Google Scholar 

  2. A. Kubacka, M. Fernández-García, G. Colón, Chem. Rev. 112, 1555 (2012)

    Article  Google Scholar 

  3. M. Marin, L. Santos-Juanes, A. Arques, A. Amat, M. Miranda, Chem. Rev. 112, 1710 (2012)

    Article  Google Scholar 

  4. C. Galindo, P. Jacques, A. Kalt, J. Photochem. Photobiol. A 141, 47 (2001)

    Article  Google Scholar 

  5. D. Chatterjee, A. Mahata, J. Photochem. Photobiol. A 153, 199 (2002)

    Article  Google Scholar 

  6. R. Wang, G. Jiang, Y. Ding, Y. Wang, X. Sun, X. Wang, W. Chen, ACS Appl. Mater. Interfaces 3, 4154 (2011)

    Article  Google Scholar 

  7. G. Jiang, X. Wang, Y. Zhou, R. Wang, R. Hu, X. Xi, W. Chen, Mater. Lett. 89, 59 (2012)

    Article  Google Scholar 

  8. Q. Chen, H. Liu, Y. Xin, X. Cheng, J. Li, Appl. Surf. Sci. 264, 476 (2013)

    Article  Google Scholar 

  9. I. Paramasivam, H. Jha, N. Liu, P. Schmuki, Small 8, 3073 (2012)

    Article  Google Scholar 

  10. W. Yin, S. Chen, J. Yang, X. Gong, Y. Yan, S. Wei, Appl. Phys. Lett. 96, 221901 (2010)

    Article  Google Scholar 

  11. J. Lee, K. You, C. Park, Adv. Mater. 24, 1084 (2012)

    Article  Google Scholar 

  12. M. Landmann, E. Rauls, W. Schmidt, J. Phys. 24, 195503 (2012)

    Google Scholar 

  13. A. Primo, A. Corma, H. García, Phys. Chem. Chem. Phys. 13, 886 (2011)

    Article  Google Scholar 

  14. P. Wang, B. Huang, Y. Dai, M. Whangbo, Phys. Chem. Chem. Phys. 14, 9813 (2012)

    Article  Google Scholar 

  15. R. Wang, G. Jiang, X. Wang, R. Hu, X. Xi, Y. Zhou, S. Bao, T. Tong, S. Wang, T. Wang, W. Chen, Powder Technol. 228, 258 (2012)

    Article  Google Scholar 

  16. A. Zaleska, Recent Pat. Eng. 2, 157 (2008)

    Article  Google Scholar 

  17. G. Jiang, R. Wang, X. Wang, R. Hu, X. Xi, Y. Zhou, S. Wang, T. Wang, W. Chen, ACS Appl. Mater. Interfaces 4, 4440 (2012)

    Article  Google Scholar 

  18. E. Szabó-Bárdos, H. Czili, A. Horváth, J. Photochem. Photobiol. A 154, 195 (2003)

    Article  Google Scholar 

  19. E. Grabowska, H. Remita, A. Zaleska, Physicochem. Probl. Miner. Process. 45, 29 (2010)

    Google Scholar 

  20. S. Sakthivel, M. Shankar, M. Palanichamy, B. Arabindoo, D. Bahnemann, V. Murugesan, Water Res. 38, 3001 (2004)

    Article  Google Scholar 

  21. C. Xu, X. Wei, Y. Guo, H. Wu, Z. Ren, G. Xu, G. Shen, G. Han, Mater. Res. Bull. 44, 1635 (2009)

    Article  Google Scholar 

  22. C. Xu, X. Wei, Z. Ren, Y. Wang, G. Xu, G. Shen, G. Han, Mater. Lett. 63, 2194 (2009)

    Article  Google Scholar 

  23. H. Cheng, B. Huang, Y. Liu, Z. Wang, X. Qin, X. Zhang, Y. Dai, Chem. Commun. 48, 9729 (2012)

    Article  Google Scholar 

  24. M. Gotic, S. Music, M. Ivanda, M. Soufek, S. Popovic, J. Mol. Struct. 535, 744 (2005)

    Google Scholar 

  25. A. Vu, Q. Nguyen, T. Bui, M. Tran, T. Dang, T. Tran, Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 015009 (2010)

    Article  Google Scholar 

  26. M. Iwasaki, M. Hara, H. Kawada, H. Tada, S. Ito, J. Colloid Interface Sci. 224, 202 (2000)

    Article  Google Scholar 

  27. S. Kim, S. Hwang, W. Choi, J. Phys. Chem. B. 109, 24260 (2005)

    Article  Google Scholar 

  28. X. Song, Y. Zheng, R. Ma, Y. Zhang, H. Yin, J. Hazard. Mater. 19, 2186 (2011)

    Google Scholar 

  29. K. Lai, Y. Zhu, J. Lu, Y. Dai, B. Huang, Comput. Mater. Sci. 67, 88 (2013)

    Article  Google Scholar 

  30. H. Fu, S. Zhang, T. Xu, Y. Zhu, J. Chen, Environ. Sci. Technol. 42, 2085 (2008)

    Article  Google Scholar 

  31. G. Jiang, X. Wang, Z. Wei, X. Li, X. Xi, R. Hu, B. Tang, R. Wang, S. Wang, T. Wang, W. Chen, J. Mater. Chem. A 1, 2406 (2013)

    Article  Google Scholar 

  32. J. Wu, F. Duan, Y. Zheng, Y. Xie, J. Phys. Chem. C 111, 12866 (2007)

    Article  Google Scholar 

  33. T. Tachikawa, Y. Takai, S. Tojo, M. Fujitsuka, H. Irie, K. Hashimoto, T. Majima, J. Phys. Chem. B 110, 13158 (2006)

    Article  Google Scholar 

  34. W. Shang, J. Wang, S. Ren, L. Sun, L. Wang, J. Zhang, J. Mater. Chem. 19, 6213 (2009)

    Article  Google Scholar 

  35. X. Huang, Y. Zhu, X. Dou, G. Li, Mater. Lett. 62, 249 (2008)

    Article  Google Scholar 

  36. M. Sienko, B. Banerjee, J. Am. Chem. Soc. 83, 4149 (1961)

    Article  Google Scholar 

  37. K. Lai, W. Wei, Y. Zhu, M. Guo, Y. Dai, B. Huang, J. Solid State Chem. 187, 103 (2012)

    Article  Google Scholar 

  38. M. Shang, W. Wang, L. Zhang, H. Xu, Mater. Chem. Phys. 120, 155 (2010)

    Article  Google Scholar 

  39. P. Chavan, S. Badadhe, I.S. Mulla, M. More, D. Joag, Nanoscale 3, 1078 (2011)

    Article  Google Scholar 

  40. G. Liu, X. Wang, L. Wang, Z. Chen, F. Li, G. Lu, H. Cheng, J. Colloid Interface Sci. 334, 171 (2009)

    Article  Google Scholar 

  41. J. Wang, D. Tafen, J. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li, N. Wu, J. Am. Chem. Soc. 131, 12290 (2009)

    Article  Google Scholar 

  42. Z. Xiong, X. Zhao, J. Am. Chem. Soc. 134, 5754 (2012)

    Article  Google Scholar 

  43. L. Ye, L. Tian, T. Peng, L. Zan, ACS Catal. 2, 1677 (2012)

    Article  Google Scholar 

  44. G. Jiang, X. Zheng, Y. Wang, T. Li, X. Sun, Powder Technol. 207, 465 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the State Education Ministry (No. 1001603-C), “521 Talents Training Plan” in ZSTU, the National Natural Science Foundation of China (Nos. 51373155 and 51133006), the Natural Science Foundation of Zhejiang Province (No. LY13B030009), and the Innovative Program for Graduate Students of Zhejiang Sci-Tech University (No. 2013YSPY15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Jiang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, B., Jiang, G., Wei, Z. et al. Preparation of N-Doped Bi2WO6 Microspheres for Efficient Visible Light-Induced Photocatalysis. Acta Metall. Sin. (Engl. Lett.) 27, 124–130 (2014). https://doi.org/10.1007/s40195-013-0009-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-013-0009-z

Key words

Navigation