Skip to main content
Log in

Refill friction stir spot welding of aluminum alloys: State-of-the-art and Perspectives

  • Review Article
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Refill friction stir spot welding (RFSSW) is a solid-state spot joining method that has attracted more and more attention from academia and industry at present. RFSSW has been successfully and widely used to weld aluminum alloys, magnesium alloys and other materials. However, the flow behavior, microstructure and properties of aluminum alloy joints are not fully understood. Therefore, the relationships among welding processes, flow behavior, microstructure evolution, mechanical properties, corrosion and fatigue performance of RFSSW aluminum alloy joints are critically reviewed in this paper to provide a theoretical reference and data support for the industrial application of RFSSW. The first part analyzes the published articles on RFSSW joints indexed in the Web of Science database by using a bibliometric method. The second part briefly introduces the welding tools used in publications. The third part introduces the typical welding defects and microstructure evolution of RFSSW joints. The fourth part describes the mechanical properties and failure modes. The fifth part addresses the corrosion behavior and fatigue property of RFSSW joints. The sixth part briefly summarizes the potential applications of RFSSW technology. Finally, a summary of RFSSW joints and future studies are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Data Availability

The processed data required to reproduce these findings cannot be shared at this time as these data form part of an ongoing study.

Abbreviations

RFSSW:

Refill friction stir spot welding

RSW:

Resistance spot welding

FSSW:

Friction stir spot welding

FSW:

Friction stir welding

BM:

Base material

HAZ:

Heat-affected zone

TMAZ:

Thermo-mechanical affected zone

SZ:

Stir zone

SAZ:

Sleeve affected zone

PAZ:

Pin affected zone

SSZ:

Sleeve-SZ

PSZ:

Pin-SZ

HABs:

High angle boundaries

LABs:

Low angle boundaries

IPF:

Inverse pole figure

RD:

Rolling direction

TD:

Transverse direction

ND:

Normal direction

SAED:

Selected area electron diffraction

TSFL:

Tensile shear fracture load

IMC:

Intermetallic compound

SRP:

Suspension rotating process

PFZs:

Precipitate-free zones

FFP:

Friction molding process

References

  1. Zohoori-Shoar V, Eslami A, Karimzadeh F, Abbasi-Baharanchi M (2017) Resistance spot welding of ultrafine grained/nanostructured Al 6061 alloy produced by cryorolling process and evaluation of weldment properties. J Manuf Process 26:84–93

    Google Scholar 

  2. Wang YJ, Tao W, Yang SL (2019) A method for improving joint strength of resistance spot welds of AA 5182-O aluminum alloy. J Manuf Process 45:661–669

    Google Scholar 

  3. MM Release, Mazda develops world’s first aluminum joining technology using friction heat, in, 2003. http://www2.mazda.com/en/publicity/release/2003/200302/200227e.html.

  4. C Schilling (2004) U.S. Patent, in: HZG (Ed.) C. Schilling, U.S. Patent 6,722,556, 20 Apr 2004, Germany,

  5. Shen ZK, Ding Y, Chen J, Fu L, Liu XC, Chen H, Guo W, Gerlich AP (2019) Microstructure, static and fatigue properties of refill friction stir spot welded 7075–T6 aluminium alloy using a modified tool. Sci Technol Weld Joining 24:587–600

    CAS  Google Scholar 

  6. Tier MD, Rosendo TS, dos Santos JF, Huber N, Mazzaferro JA, Mazzaferro CP, Strohaecker TR (2013) The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds. J Mater Process Technol 213:997–1005

    CAS  Google Scholar 

  7. de Castro CC, Plaine AH, de Alcantara NG, dos Santos JF (2018) Taguchi approach for the optimization of refill friction stir spot welding parameters for AA 2198–T8 aluminum alloy. Int J Adv Manuf Technol 99:1927–1936

    Google Scholar 

  8. Wang S, Wei X, Xu JJ, Hong J, Song XF, Yu C, Chen JM, Chen XQ, Lu H (2020) Strengthening and toughening mechanisms in refilled friction stir spot welding of AA 2014 aluminum alloy reinforced by graphene nanosheets. Mater Design 186:108212

  9. HG Yang, HJ Yang, X Hu (2015) Simulation on the plunge stage in refill friction stir spot welding of aluminum alloys. Proceedings of the 4st International Conference on Mechatronics, Materials, Chemistry and Computer Engineering 521–524

  10. Lacki P, Derlatka A, Galaczynski T (2017) Selection of basic position in refill friction stir spot welding of 2024–T3 and D16UTW aluminum alloy sheets. Arch Metall Mater 62:443–449

    CAS  Google Scholar 

  11. Liu ZL, Yang K, Yan DJ (2019) Refill friction stir spot welding of dissimilar 6061/7075 aluminum alloy. High Temp Mater Processes 38:69–75

    CAS  Google Scholar 

  12. Xu ZW, Li ZW, Ji SD, Zhang LG (2018) Refill friction stir spot welding of 5083-O aluminum alloy. J Mater Sci Technol 34:878–885

    CAS  Google Scholar 

  13. Shi Y, Yue YM, Zhang LG, Ji SD, Wang Y (2018) Refill friction stir spot welding of 2198–T8 aluminum alloy. Trans Indian Inst Met 71:139–145

    CAS  Google Scholar 

  14. Ren XH, Li JZ, Dong CL, Tan JH (2018) Microstructure and mechanical properties of, aluminum alloy refilled friction stir spot welded joint. Hot Working Technol 47:52–55

    Google Scholar 

  15. Shen ZK, Yang XQ, Zhang ZH, Cui L, Li TL (2013) Microstructure and failure mechanisms of refill friction stir spot welded 7075–T6 aluminum alloy joints. Mater Des 44:476–486

    CAS  Google Scholar 

  16. Li GH, Zhou L, Luo LY, Wu XM, Guo N (2019) Microstructural evolution and mechanical properties of refill friction stir spot welded alclad 2A12-T4 aluminum alloy. J Market Res 8:4115–4129

    CAS  Google Scholar 

  17. Ji SD, Li ZW, Wang Y, Ma L, Zhang LG (2017) Material flow behavior of refill friction stir spot welded LY12 aluminum alloy. High Temp Mater Processes 36:495–504

    CAS  Google Scholar 

  18. Shang Z, Zuo YY, Ji SD, Wang Y, Chai P (2021) Joint formation and mechanical properties of 2060 aluminum alloy refill friction stir spot welding joint. Arch Metall Mater 66:153–161

    CAS  Google Scholar 

  19. Li ZW, Ji SD, Ma YN, Chai P, Yue YM, Gao SS (2016) Fracture mechanism of refill friction stir spot-welded 2024–T4 aluminum alloy. Int J Adv Manuf Technol 86:1925–1932

    Google Scholar 

  20. Wang XJ, Xu YW, Wang XL, Luan GH (2016) Finite element analyses on fatigue properties of refill friction stir spot welded joint of 6082–T6 aluminum alloy. Mater Rev 30:141–144

    CAS  Google Scholar 

  21. Zhu XG, Wang LF, Qiao FB, Guo LJ (2014) Fatigue failure analysis of 6061–T6 aluminum alloy refilled friction stir spot welding. Trans China Weld Inst 35:91–94

    CAS  Google Scholar 

  22. Ke WC, Oliveira JP, Ao SS, Teshome FB, Chen L, Peng B, Zeng Z (2022) Thermal process and material flow during dissimilar double-sided friction stir spot welding of AZ31/ZK60 magnesium alloys. J Market Res 17:1942–1954

    CAS  Google Scholar 

  23. Zhang HF, Zhou L, Li GH, Tang YT, Li WL, Wang R (2021) Prediction and validation of temperature distribution and material flow during refill friction stir spot welding of AZ91D magnesium alloy. Sci Technol Weld Joining 26:153–160

    CAS  Google Scholar 

  24. Campanelli LC, Suhuddin UFH, Antonialli AÍS, dos Santos JF, de Alcântara NG, Bolfarini C (2013) Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds. J Mater Process Technol 213:515–521

    CAS  Google Scholar 

  25. Zhang HF, Zhou L, Li WL, Li GH, Tang YT, Guo N, Feng JC (2021) Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints. Int J Miner Metall Mater 28:699–709

    Google Scholar 

  26. Chai P, Hu W, Ji SD, Ai XX, Lv Z, Song Q (2019) Refill friction stir spot welding dissimilar Al/Mg alloys. J Mater Eng Perform 28:6174–6181

    CAS  Google Scholar 

  27. Wang LF, Zhu XG, Qiao FB, Guo LJ (2014) Properties of A1-Mg alloys joints welded by refill friction stir spot weldeing process. Trans China Weld Inst 35:99–103

    Google Scholar 

  28. Wang LF, Qiao FB, Yu Z, Zhu XG, Guo LJ (2014) Microstructure and mechanical property of refill friction stir spot welded joint of Al-Mg alloy. Mater Mech Eng 38:24-27,62

    CAS  Google Scholar 

  29. Xu B, Dan CC, He ZK, Ji SD, Lv Z (2019) Microstructure and mechanical properties of refill friction stir spot welded dissimilar Mg/Al alloys. Trans China Weld Inst 40:106–110

    Google Scholar 

  30. Shen ZK, Liu XY, Li DX, Ding YQ, Hou WT, Chen HY, Li WY, Gerlich AP (2021) Interfacial bonding and mechanical properties of Al/Mg dissimilar refill friction stir spot welds using a grooved tool. Crystals 11(4):429

    CAS  Google Scholar 

  31. Dong ZB, Song Q, Ai XX, Lv Z (2019) Effect of joining time on intermetallic compound thickness and mechanical properties of refill friction stir spot welded dissimilar Al/Mg alloys. J Manuf Process 42:106–112

    Google Scholar 

  32. Shen ZK, Chen J, Ding YQ, Hou J, Amirkhiz BS, Chan K, Gerlich AP (2018) Role of interfacial reaction on the mechanical performance of Al/steel dissimilar refill friction stir spot welds. Sci Technol Weld Joining 23:462–477

    CAS  Google Scholar 

  33. Dong HG, Chen S, Song Y, Guo X, Zhang XS, Sun ZY (2016) Refilled friction stir spotwelding of aluminum alloy to galvanized steel sheets. Mater Des 94:457–466

    CAS  Google Scholar 

  34. Fukada S, Ohashi R, Fujimoto R, Okada H (2013) Refill friction stir spot welding of dissimilar materials consisting of Al 6061 and hot dip zinc-coated steel sheets. Proceedings of the 1st International Joint Symposium on Joining and Welding 183–187

  35. Ding YQ, Shen ZK, Gerlich AP (2017) Refill friction stir spot welding of dissimilar aluminum alloy and AlSi coated steel. J Manuf Process 30:353–360

    Google Scholar 

  36. Li P, Chen S, Dong HG, Ji H, Li YB, Guo X, Yang GS, Zhang XS, Han XL (2020) Interfacial microstructure and mechanical properties of dissimilar aluminum/steel joint fabricated via refilled friction stir spot welding. J Manuf Process 49:385–396

    CAS  Google Scholar 

  37. Shen ZK, Ding YQ, Chen J, Amirkhiz BS, Wen JZ, Fu L, Gerlich AP (2019) Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds. J Mater Sci Technol 35:1027–1038

    CAS  Google Scholar 

  38. Yu MR, Zhao HY, Zhang ZL, Zhou L, Song XG (2022) Friction surfacing assisted refilled friction stir spot welding of AA6061 alloy and Q235 steel. J Manuf Process 77:1–12

    Google Scholar 

  39. Li P, Wang YQ, Wang S, Yang J, Dong HG, Yan DJ (2018) Corrosion behavior of refilled friction stir spot welded joint between aluminum alloy and galvanized steel. Mater Res Express 5:096524

  40. Chen Y, Chen J, Amirkhiz BS, Worswick MJ, Gerlich AP (2015) Microstructures and properties of Mg alloy/DP600 steel dissimilar refill friction stir spot welds. Sci Technol Weld Joining 20:494–501

    CAS  Google Scholar 

  41. Shen ZK, Ding YQ, Chen J, Gerlich AP (2016) Comparison of fatigue behavior in Mg/Mg similar and Mg/steel dissimilar refill friction stir spot welds. Int J Fatigue 92:78–86

    CAS  Google Scholar 

  42. Ashong AN, Lee M, Hong ST, Lee YS, Kim JH (2021) Refill friction stir spot welding of dissimilar AA 6014 Al alloy and carbon-fiber-reinforced polymer composite. Met Mater Int 27:639–649

    CAS  Google Scholar 

  43. Oliveira PHF, Amancio-Filho ST, dos Santos JF, Hage E (2010) Preliminary study on the feasibility of friction spot welding in PMMA. Mater Lett 64:2098–2101

    CAS  Google Scholar 

  44. Amancio-Filho ST, Bueno C, dos Santos JF, Huber N, Hage E (2011) On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures. Mater Sci Eng, A 528:3841–3848

    Google Scholar 

  45. Schmal C, Meschut G (2020) Refill friction stir spot and resistance spot welding of aluminium joints with large total sheet thicknesses. Weld World 64:1471–1480

    CAS  Google Scholar 

  46. Gera D, Fu BL, Suhuddin UFHR, Plaine A, Alcantara N, dos Santos JF, Klusemann B (2021) Microstructure, mechanical and functional properties of refill friction stir spot welds on multilayered aluminum foils for battery application. J Market Res 13:2272–2286

    CAS  Google Scholar 

  47. Qiao FB, Cheng K, Wang LF, Guo LJ (2016) An experimental investigation on the dissimilar joining of AA6061 and 1Cr18Ni9Ti by refill friction stir spot welding and its mechanical properties. Proc Inst Mech Eng 230:779–785

    CAS  Google Scholar 

  48. Prakash SJ, Muthukumaran S (2011) Refilling probe hole of friction spot joints by friction forming. Mater Manuf Processes 26:1539–1545

    CAS  Google Scholar 

  49. Venukumar S, Yalagi S, Muthukumaran S (2013) Comparison of microstructure and mechanical properties of conventional and refilled friction stir spot welds in AA 6061–T6 using filler plate. Trans Nonferrous Metals Soc China 23:2833–2842

    CAS  Google Scholar 

  50. Yang HG, Yang HJ (2013) Experimental investigation on refill friction stir spot welding process of aluminum alloys. 3rd International Conference on Mechanical Engineering. Industry and Manufacturing Engineering, Wuhan, China, pp 243–246

    Google Scholar 

  51. Venukumar S, Yalagi SG, Muthukumaran S, Kailas SV (2014) Static shear strength and fatigue life of refill friction stir spot welded AA 6061–T6 sheets. Sci Technol Weld Joining 19:214–223

    CAS  Google Scholar 

  52. Cao JY, Wang M, Kong L, Zhao HX, Chai P (2017) Microstructure, texture and mechanical properties during refill friction stir spot welding of 6061–T6 alloy. Mater Charact 128:54–62

    CAS  Google Scholar 

  53. Zhou L, Luo LY, Zhang TP, He WX, Huang YX, Feng JC (2017) Effect of rotation speed on microstructure and mechanical properties of refill friction stir spot welded 6061–T6 aluminum alloy. Int J Adv Manuf Technol 92:3425–3433

    Google Scholar 

  54. Zhou L, Luo LY, Wang R, Zhang JB, Huang YX, Song XG (2018) Process parameter optimization in refill friction spot welding of 6061 aluminum alloys using response surface methodology. J Mater Eng Perform 27:4050–4058

    CAS  Google Scholar 

  55. Fernandes CA, Urtiga Filho SL, Suhuddin U, dos Santos JF (2019) Effects of geometrical feature on microstructures and mechanical properties of refill friction stir spot welding 6061 aluminum alloy. Mater Res-Ibero-AM J 22(6):e20190386

  56. Chen SJ, Shi JX, Yuan T, Jiang XQ (2020) Improvement of refill friction stir spot welds by auxiliary material addition. Mater Sci Technol 36:367–374

    CAS  Google Scholar 

  57. Sun GD, Zhou L, Zhang RX, Luo LY, Xu H, Zhao HY, Guo N, Zhang D (2020) Effect of sleeve plunge depth on interface/mechanical characteristics in refill friction stir spot welded joint. Acta Metallurgica Sinica-English Letters 33:551–560

    CAS  Google Scholar 

  58. Wang XJ, Xu YW, Wei WK, Luan GH (2015) Heat-flow coupling analysis of 6082–T6 with refill friction stir spot welding, Material. Sci Technol 23:120–124

    CAS  Google Scholar 

  59. Silva BH, Zepon G, Bolfarini C, dos Santos JF (2020) Refill friction stir spot welding of AA6082-T6 alloy: Hook defect formation and its influence on the mechanical properties and fracture behavior. Mat Sci Eng A 773:138724

  60. Santana LM, Suhuddin UFH, Oelscher MH, Strohaecker TR, dos Santos JF (2017) Process optimization and microstructure analysis in refill friction stir spot welding of 3-mm-thick Al-Mg-Si aluminum alloy. Int J Adv Manuf Technol 92:4213–4220

    Google Scholar 

  61. Wang YX, Zhang LG, Lyu Z (2017) Study on formation and mechanical properties of 5083-O aluminum alloy refill friction stir spot welding joint. Hot Working Technol 46:19–21

    Google Scholar 

  62. Liu XB, Qiao FB, Guo LJ, Qiu XE (2017) Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding. Int J Miner Metall Mater 24:164–170

    Google Scholar 

  63. Shen JJ, Lage SBM, Suhuddin UFH, Bolfarini C, dos Santos JF (2018) Texture development and material flow behavior during refill friction stir spot welding of AlMgSc, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials. Science 49A:241–254

    Google Scholar 

  64. Miranda Lage SB, Campanelli LC, de Bribean Guerra AP, Shen JJ, dos Santos JF, Carvalho Pereira PS, da Silva C, Bolfarini, (2019) A study of the parameters influencing mechanical properties and the fatigue performance of refill friction stir spot welded AlMgSc alloy. Int J Adv Manuf Technol 100:101–110

    Google Scholar 

  65. Venukumar S, Muthukumaran S, Swaroop Y (2013) Microstructure and mechanical properties of refilled friction stir spot welding of commercial pure aluminium. Proceeding of the 6th International Light Metals Technology Conference 776–780

  66. Zhang P, Chen C, Zhang CW, Cao YF, Li SJ, Li F, Jiang H, Zhao SD (2022) Novel technique of friction extrusion self-refilling for repairing keyhole of flat clinched joint. Int J Mech Sci 233:107658

    Google Scholar 

  67. Yang HK, Cai DT, Li JX, Kwok CY, Zhao YQ, Li Y, Liu HS, Lai WW (2021) Fatigue behavior of Al-Al and Al-steel refill friction stir spot welding joints. Fatigue Fract Eng Mater Struct 44:3219–3223

    Google Scholar 

  68. Shen ZK, Yang XQ, Zhang ZH, Yin YH (2013) Analysis of microstructure and mechanical properties of refill friction stir spot welded aluminum alloy. Trans China Weld Inst 34:73–76

    Google Scholar 

  69. Shen ZK, Chen Y, Hou JSC, Yang X, Gerlich AP (2015) Influence of processing parameters on microstructure and mechanical performance of refill friction stir spot welded 7075–T6 aluminium alloy. Sci Technol Weld Joining 20:48–57

    CAS  Google Scholar 

  70. D Wydrzynski, M Bucior, A Kubit (2017) The effects of welding parameters on the tensile shear strength of refill friction stir spot welding of 7075-T6 aluminium alloy joints. Proceeding of the 2nd International Conference of Computational Methods in Engineering Science 15:04012

  71. Kubit A, Bucior M, Wydrzynski D, Trzepiecinski T, Pytel M (2018) Failure mechanisms of refill friction stir spot welded 7075–T6 aluminium alloy single-lap joints. Int J Adv Manuf Technol 94:4479–4491

    Google Scholar 

  72. Kubit A, Wydrzynski D, Trzepiecinski T (2018) Refill friction stir spot welding of 7075–T6 aluminium alloy single-lap joints with polymer sealant interlayer. Compos Struct 201:389–397

    Google Scholar 

  73. Kubit A, Kluz R, Trzepiecinski T, Wydrzynski D, Bochnowski W (2018) Analysis of the mechanical properties and of micrographs of refill friction stir spot welded 7075–T6 aluminium sheets, Archives of Civil and Mechanical. Engineering 18:235–244

    Google Scholar 

  74. Kluz R, Kubit A, Trzepiecinski T, Faes K (2019) Polyoptimisation of the refill friction stir spot welding parameters applied in joining 7075–T6 Alclad aluminium alloy sheets used in aircraft components. Int J Adv Manuf Technol 103:3443–3457

    Google Scholar 

  75. Kluz R, Kubit A, Trzepiecinski T, Faes K, Bochnowski W (2019) A weighting grade-based optimization method for determining refill friction stir spot welding process parameters. J Mater Eng Perform 28:6471–6482

    CAS  Google Scholar 

  76. Kubit A, Drabczyk M, Trzepiecinski T, Bochnowski W, Kascak LU, Slota J (2020) Fatigue life assessment of refill friction stir spot welded alclad 7075–T6 aluminium alloy joints. Metals 10(5):633

    CAS  Google Scholar 

  77. Kubit A, Trzepiecinski T (2020) A fully coupled thermo-mechanical numerical modelling of the refill friction stir spot welding process in Alclad 7075–T6 aluminium alloy sheets. Arch Civ Mech Eng 20(4):117

    Google Scholar 

  78. Zhang D, Dong JH, Xiong JT, Jiang N, Li JL, Guo W (2022) Microstructure characteristics and corrosion behavior of refill friction stir spot welded 7050 aluminum alloy. J Market Res 20:1302–1314

    CAS  Google Scholar 

  79. T Yuan, WT Gong, YN Li, SJ Chen (2018) Research on the effect of the processing parameters on susceptibility of liquation cracking of Al alloys during refilled friction stir spot welding. Light Metals Symposium at the 147th Annual TMS Meeting and Exhibition 401–407

  80. Lu ZY, Gong WT, Chen SJ, Yuan T, Li XX (2019) Microstructure and mechanical properties of refill friction stir spot welded 7475 aluminum alloy joints. Rare Metal Mater Eng 48:1267–1274

    CAS  Google Scholar 

  81. Kwee I, De Waele W, Faes K (2019) Weldability of high-strength aluminium alloy EN AW-7475-T761 sheets for aerospace applications, using refill friction stir spot welding. Weld World 63:1001–1011

    CAS  Google Scholar 

  82. Lu ZY, Gong WT, Chen SJ, Jiang XQ, Yuan T (2020) Chain holes of refill friction stir spot welded 7475 aluminum alloy joints. J Tianjin Univ 53:105–110

    Google Scholar 

  83. Zhao YQ, Dong CL, Wang CG, Miao S, Tan JH, Yi YY (2020) Microstructures evolution in refill friction stir spot welding of Al-Zn-Mg-Cu alloy. Metals 10(1):145

    CAS  Google Scholar 

  84. Shi WY, Lin ZY (2015) Microstructure and mechanical properties of refilled friction stir spot welded joints for 2A12 Al alloy. Hot Working Technol 44:216-217,220

    Google Scholar 

  85. Li GH, Zhou L, Luo LY, Wu XM, Guo N (2021) Material flow behavior and microstructural evolution during refill friction stir spot welding of alclad 2A12-T4 aluminum alloy. Int J Miner Metall Mater 28:131–141

    CAS  Google Scholar 

  86. Yue YM, Li ZW, Ma YN, Chai P, Xing JW (2015) Effects of plunge depth on fracture behaviors of refill friction stir spot welding. J Xi’an Jiaotong Univ 49:122–127

    Google Scholar 

  87. Ji SD, Zhuo B, Ma L, Chai P, Zhang LG, Li ZW (2016) Simulation of material flow behavior during refill friction stir spot welding process. Trans China Weld Inst 37:39–42

    Google Scholar 

  88. Ji SD, Wang Y, Ma L, Chai P, Gao SS (2017) Effect of refill time on fracture feature of refill friction stir spot welding. Trans China Weld Inst 38:40–43

    Google Scholar 

  89. Ji SD, Wang Y, Li ZW, Yue YM, Chai P (2017) Effect of tool geometry on material flow behavior of refill friction stir spot welding. Trans Indian Inst Met 70:1417–1430

    CAS  Google Scholar 

  90. Li ZW, Gao SS, Ji SD, Yue YM, Chai P (2016) Effect of rotational speed on microstructure and mechanical properties of refill friction stir spot welded, Al alloy. J Mater Eng Perform 25:1673–1682

    CAS  Google Scholar 

  91. Brzostek RC, Suhuddin U, dos Santos JF (2018) Fatigue assessment of refill friction stir spot weld in AA 2024–T3 similar joints. Fatigue Fract Eng Mater Struct 41:1208–1223

    Google Scholar 

  92. Deng LP, Li SH, Ke LM, Liu JH, Kang JD (2019) Microstructure and fracture behavior of refill friction stir spot welded joints of AA2024 using a novel refill technique. Metals 9(3):286

    CAS  Google Scholar 

  93. Login W, Sliwa RE, Ostrowski R, Andres J (2019) The influence of tool geometry for refill friction stir spot welding (rfssw) on weld properties during joining thin sheets of aluminum alloys. Arch Metall Mater 64:975–981

    CAS  Google Scholar 

  94. Schmal C, Meschut G, Buhl N (2019) Joining of high strength aluminum alloys by refill friction stir spot welding. Weld World 63:541–550

    CAS  Google Scholar 

  95. Yue YM, Shi Y, Ji SD, Wang Y, Li ZW (2017) Effect of sleeve plunge depth on microstructure and mechanical properties of refill friction stir spot welding of 2198 aluminum alloy. J Mater Eng Perform 26:5064–5071

    CAS  Google Scholar 

  96. de Castro CC, Plaine AH, Dias GP, de Alcantara NG, dos Santos JF (2018) Investigation of geometrical features on mechanical properties of AA 2198 refill friction stir spot welds. J Manuf Process 36:330–339

    Google Scholar 

  97. de Castro CC, Shen JJ, Plaine AH, Suhuddin UFH, de Alcântara NG, dos Santos JF, Klusemann B (2022) Tool wear mechanisms and effects on refill friction stir spot welding of AA 2198–T8 sheets. J Market Res 20:857–866

    Google Scholar 

  98. Nasiri AM, Shen ZK, Hou JSC, Gerlich AP (2018) Failure analysis of tool used in refill friction stir spot welding of Al 2099 alloy. Eng Fail Anal 84:25–33

    CAS  Google Scholar 

  99. Wang Y, Chai P (2020) Effects of welding parameters on micro-junction structure and fracture behavior of refill friction stir spot welded joints for 2060 aluminum alloys. Weld World 64:2033–2051

    CAS  Google Scholar 

  100. Wang Y, Chai P (2021) Characteristics and tensile-shear properties of refill fssw joint under different plunge depths in 2060 aluminum alloy. Arch Metall Mater 66:451–460

    CAS  Google Scholar 

  101. Zou YF, Wang FF, Li WY, Chu Q, Tang HW, Cui F (2020) Study on microstructure and properties of refill friction stir spot welding joints of 2219 aluminum alloy with different thickness, Journal of. Mech Eng 56:176–183

    Google Scholar 

  102. Zou YF, Li WY, Chu Q, Shen ZK, Wang FF, Tang HW, Vairis A, Liu LY (2021) The impact of macro/microstructure features on the mechanical properties of refill friction stir spot-welded joints of AA 2219 alloy with a large thickness ratio. Int J Adv Manuf Technol 112:3093–3103

    Google Scholar 

  103. Zou YF, Li WY, Xu YX, Yang XW, Chu Q, Shen ZK (2022) Detailed characterizations of microstructure evolution, corrosion behavior and mechanical properties of refill friction stir spot welded 2219 aluminum alloy. Mater Charact 183:111594

    CAS  Google Scholar 

  104. Zou YF, Li WY, Yang XW, Patel V, Shen ZK, Chu Q, Wang FF, Tang HW, Cui F, Chi ML (2022) Characterizations of dissimilar refill friction stir spot welding 2219 aluminum alloy joints of unequal thickness. J Manuf Process 79:91–101

    Google Scholar 

  105. Zou YF, Li WY, Chu Q, Wu D, Su Y, Shen ZK, Wang FF, Tang HW (2021) Formability and mechanical property of refill friction stir spot-welded joints. Weld World 65:899–907

    CAS  Google Scholar 

  106. Wang Y, Chai P, Ma H, Cao XM, Zhang YH (2020) Formation mechanism and fracture behavior in extra-filling refill friction stir spot weld for Al-Cu-Mg aluminum alloy. J Mater Sci 55:358–374

    CAS  Google Scholar 

  107. Zheng M, Shen ZK, Yang XQ, Yin YH (2016) Defects and mechanical properties of refill friction stir spot welded joint of dissimilar aluminum alloys. Trans China Weld Inst 37:87–90

    Google Scholar 

  108. Li SB, Feng XS, Wang J, Song XC, Cui F (2020) Microstructure and mechanical properties of 5A06/2219-T6 refill friction spot weld with non-circular pin-plunge mode. Chin J Nonferrous Metals 30:1552–1558

    Google Scholar 

  109. Li C, Zhang Y, Gao Y, Zhou L, Wang N (2021) Analysis of process and microstructure characteristics of aluminum alloy refill friction stir spot welding. Aerosp Mater Technol 51:86–90

    Google Scholar 

  110. Shen ZK, Ding YQ, Gopkalo O, Diak B, Gerlich AP (2018) Effects of tool design on the microstructure and mechanical properties of refill friction stir spot welding of dissimilar Al alloys. J Mater Process Technol 252:751–759

    CAS  Google Scholar 

  111. Shi Y, Zhang LG, Lyu Z, Xiao ZH (2018) Microstructure and mechanical properties of refill friction stir spot welding joint of 6061/7075 dissimilar aluminum alloys. Hot Work Technol 47:170–172

    Google Scholar 

  112. Shen ZK, Li WY, Ding YQ, Hou W, Liu XC, Guo W, Chen HY, Liu X, Yang J, Gerlich AP (2020) Material flow during refill friction stir spot welded dissimilar Al alloys using a grooved tool. J Manuf Process 49:260–270

    Google Scholar 

  113. Xing YS, Dang PF, Li F, Liu XS (2018) Microstructure and mechanical properties of refill friction stir spot welded dissimilar 7075/6061 aluminum alloys. Trans China Weld Inst 39:22–25

    Google Scholar 

  114. Boldsaikhan E, Fukada S, Fujimoto M, Kamimuki K, Okada H (2019) Refill friction stir spot welding of surface-treated aerospace aluminum alloys with faying-surface sealant. J Manuf Process 42:113–120

    Google Scholar 

  115. Chen D, Li JL, Xiong JT, Shi JM, Dou JX, Zhao HX (2021) Enhance mechanical properties of refill friction stir spot welding joint of alclad 7050/2524 aluminum via suspension rotating process. J Market Res 12:1243–1251

    CAS  Google Scholar 

  116. Cao JY, Zhang CC, Xing YF, Wang M (2020) Pin plunging reinforced refill friction stir spot welding of alclad 2219 to 7075 alloy. J Mater Process Tech 284:116760

  117. de Sousa Santos P, McAndrew AR, Gandra J, Zhang X (2021) Refill friction stir spot welding of aerospace alloys in the presence of interfacial sealant. Weld World 65:1451–1471

    Google Scholar 

  118. Vacchi GS, Silva R, Plaine AH, Suhuddin UFH, Alcantara NG, Sordi VL, Rovere CAD (2020) Refill friction stir spot welded AA5754-H22/Ti-6Al-4V joints: Microstructural characterization and electrochemical corrosion behavior of aluminum surfaces. Mater Today Commun 22:100759

  119. Song KJ, Lv L, Luo JR, Liu XQ, Ji YK, Zhong ZH, Wang GP (2022) Microstructure and mechanical properties of refill friction stir spot welded Al/Ti dissimilar alloys joints. Rare Metal Mater Eng 51:1789–1796

    CAS  Google Scholar 

  120. Zuo YY, Kong LP, Liu ZL, Lv Z, Wen HJ (2020) Process parameters optimization of refill friction stir spot welded Al/Cu joint by response surface method. Trans Indian Inst Met 73:2975–2984

    CAS  Google Scholar 

  121. Shen ZK, Ding YQ, Guo W, Hou WT, Liu XC, Chen HY, Liu FJ, Li WY, Gerlich AP (2021) Refill friction stir spot welding Al alloy to copper via pure metallurgical joining mechanism. Chin J Mech Eng 34(4):90–97

    Google Scholar 

  122. Feng XS, Li SB, Tang LN, Wang HM (2020) Refill friction stir spot welding of similar and dissimilar alloys: A review. Acta Metall Sinica-English Lett 33:30–42

    CAS  Google Scholar 

  123. Shen ZK, Ding YQ, Gerlich AP (2020) Advances in friction stir spot welding. Crit Rev Solid State Mater Sci 45:457–534

    CAS  Google Scholar 

  124. Zhou L, Zhou WL, Du ZY, Zhao RF, Meng FX, Feng JC (2014) Research status of friction stir spot welding technology. Aerosp Manuf Technol 187(05):1–5+10

    Google Scholar 

  125. Qiao FB, Zhang S, Guo LJ (2021) Friction stir spot welding technology and its application in industry. Electr Weld Mach 42(10):82–86

    Google Scholar 

  126. Tang ZY, Wang YQ, Dong HG (2020) Progress of the friction stir spot welding in lightweight dissimilar materials. J Mech Eng-En 56(6):147

    Google Scholar 

  127. Li MS, Zhang CQ, Wang DY, Zhou L, Wellmann D, Tian YT (2020) Friction stir spot welding of aluminum and copper: A review. Materials 13(1):156

    CAS  Google Scholar 

  128. Olatunji OO, Emel T, Erdinç K (2015) Friction stir spot welding of aluminium alloys-A recent review. Mater Test 57(7–8):609–627

    Google Scholar 

  129. Yang Y, Bi J, Liu H, Li Y, Li M, Ao S, Luo Z (2022) Research progress on the microstructure and mechanical properties of friction stir welded AlLi alloy joints. J Manuf Process 82:230–244

    Google Scholar 

  130. Zou YF, Li WY, Yang XW, Su Y, Chu Q, Shen ZK (2022) Microstructure and mechanical properties of refill friction stir spot welded joints: Effects of tool size and welding parameters. J Market Res 21:5066–5080

    Google Scholar 

  131. Lauterbach D, Keil D, Harms A, Leupold C, Dilger K (2021) Tool wear behaviour and the influence of wear-resistant coatings during refill friction stir spot welding of aluminium alloys. Weld World 65:243–250

    CAS  Google Scholar 

  132. Ji SD, Wang YX, Zhang J, Li ZW (2017) Influence of rotating speed on microstructure and peel strength of friction spot welded 2024–T4 aluminum alloy. Int J Adv Manuf Technol 90:717–723

    Google Scholar 

  133. Cao JY, Wang M, Kong L, Yin YH, Guo LJ (2016) Numerical modeling and experimental investigation of material flow in friction spot welding of Al 6061–T6. Int J Adv Manuf Technol 89:2129–2139

    Google Scholar 

  134. Mazzaferro JAE, Rosendo TDS, Mazzaferro CCP, Ramos FD, Tier MAD, Strohaecker TR, dos Santos JF (2009) Preliminary study on the mechanical behavior of friction spot welds. Soldagem Inspeção 14:238–247

    Google Scholar 

  135. Kubit A, Trzepiecinski T, Gadalinska E, Slota J, Bochnowski W (2021) Investigation into the effect of rfssw parameters on tensile shear fracture load of 7075–T6 alclad aluminium alloy joints. Materials 14(12):3397

    CAS  Google Scholar 

  136. Lacki P, Derlatka A (2016) Experimental and numerical investigation of aluminium lap joints made by RFSSW. Meccanica 51:455–462

    Google Scholar 

  137. Zou YF, Wang FF, Li WY, Yang XW, Chu Q, Gu C (2019) Tensile-shear behavior of refill friction stir spot welded multi-point joints, Journal of Netshape Forming. Engineering 11:35–41

    Google Scholar 

  138. Zhang D, Xiong JT, Ma YK, Jiang N, Li JL (2022) Study of microstructure characteristics and corrosion behavior of 2524 aluminum alloy RFSSW joint. Mater Charact 190:112057

    CAS  Google Scholar 

  139. Ma YT, Dong HG, Wang YQ, Yang GS, Xia YQ, Li P, Hao XH, Yang J, Guo BZ, Ji H, Lei MK (2021) Effect of Zn coating on microstructure and corrosion behavior of dissimilar joints between aluminum alloy and steel by refilled friction stir spot welding. J Appl Electrochem 52:85–102

    Google Scholar 

  140. A Dudek, J Andres, A Wronska, W Login (2020) Effect of corrosion protection method on properties of rsw and rfssw lap joints applied in production of thin-walled aerostructures. Materials 13(8)

  141. Wang L, Zhao XH, Cong JH, Hui L, Fu Q (2020) Effect of welding process parameters on fatigue property of 7B04-T6 aluminum alloy friction stir spot welded joint, Materials for. Mech Eng 44:28–32

    Google Scholar 

  142. Venukumar S, Muthukumaran S, Yalagi SG, Kailas SV (2014) Failure modes and fatigue behavior of conventional and refilled friction stir spot welds in AA 6061–T6 sheets. Int J Fatigue 61:93–100

    CAS  Google Scholar 

  143. Kubit A, Trzepiecinski T, Faes K, Drabczyk M, Bochnowski W, Korzeniowski M (2019) Analysis of the effect of structural defects on the fatigue strength of RFSSW joints using C-scan scanning acoustic microscopy and SEM. Fatigue Fract Eng Mater Struct 42:1308–1321

    CAS  Google Scholar 

  144. Kubit A, Trzepiecinski T, Bochnowski W, Drabczyk M, Faes K (2019) Analysis of the mechanism of fatigue failure of the refill friction stir spot welded overlap joints, Archives of Civil and Mechanical. Engineering 19:1419–1430

    Google Scholar 

  145. Plaine AH, Suhuddin UFH, Alcântara NG, dos Santos JF (2016) Fatigue behavior of friction spot welds in lap shear specimens of AA5754 and Ti6Al4V alloys. Int J Fatigue 91:149–157

    CAS  Google Scholar 

  146. Ikumapayi OM, Akinlabi ET (2019) Recent advances in keyhole defects repairs via refilling friction stir spot welding. Mater Today-Proc 18:2201–2208

    CAS  Google Scholar 

  147. Reimann M, Goebel J, dos Santos JF (2018) Microstructure evolution and mechanical properties of keyhole repair welds in AA 2219–T851 using refill friction stir spot welding. J Mater Eng Perform 27:5220–5226

    CAS  Google Scholar 

  148. Reimann M, Gartner T, Suhuddin U, Göbel J, dos Santos JF (2016) Keyhole closure using friction spot welding in aluminum alloy 6061–T6. J Mater Process Technol 237:12–18

    CAS  Google Scholar 

  149. Reimann M, Goebel J, dos Santos JF (2017) Microstructure and mechanical properties of keyhole repair welds in AA 7075–T651 using refill friction stir spot welding. Mater Des 132:283–294

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the State Key Laboratory of Solidification Processing (NPU, China) (2021-TZ-01), the 2021 Doctoral Dissertation Innovation Fund Project (CX 2021067), the Research Fund of the State Key Laboratory of Solidification Processing (NPU, China) (2022-BJ-02), the National Natural Science Foundation of China (52105402), and the Natural Science Foundation of Shaanxi Province (2021-JQ-102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenya Li.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III—Resistance Welding, Solid State Welding, and Allied Joining Process.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Li, W., Shen, Z. et al. Refill friction stir spot welding of aluminum alloys: State-of-the-art and Perspectives. Weld World 67, 1853–1885 (2023). https://doi.org/10.1007/s40194-023-01552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-023-01552-0

Keywords

Navigation