Skip to main content
Log in

Predicting liquid metal embrittlement severity in resistance spot welding using hot tensile testing data

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Advanced high strength steels are increasingly being used in automotive structures. However, the zinc coating commonly applied for corrosion protection can add complications during the resistance spot welding (RSW) process, namely liquid metal embrittlement (LME). This study evaluates the LME susceptibility of three material grades and two coating types during RSW and provides a new approach to assess material LME susceptibility. This work provides a methodology to process hot tensile testing LME susceptibility data to calculate LME severity observed in resistance spot welding. This methodology was applied to hot tensile testing data from six steels (three grades with two different coating types) and successfully predicted the relative LME response of these materials resulting from RSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choi DY, Sharma A, Uhm SH et al (2019) Liquid metal embrittlement of resistance spot welded 1180 TRIP steel: effect of electrode force on cracking behavior. Met Mater Int 25:219–228

    Article  CAS  Google Scholar 

  2. DiGiovanni C, Ghatei Kalashami A, Biro E et al (2021) Liquid metal embrittlement transport mechanism in the Fe/Zn system: stress-assisted diffusion. Materialia 18:101153

    Article  CAS  Google Scholar 

  3. Razmpoosh MH, Langelier B, Marzbanrad E et al (2020) Atomic-scale Investigation of liquid-metal-embrittlement crack-path: revealing mechanism and role of grain boundary chemistry. Acta Mater 204:116519

    Article  Google Scholar 

  4. Bhattacharya D (2018) Liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels. Mater Sci Technol 34:1809–1829

    Article  CAS  Google Scholar 

  5. DiGiovanni C, He L, Pistek U et al (2020) Role of spot weld electrode geometry on liquid metal embrittlement crack development. J Manuf Process 49:1–9

    Article  Google Scholar 

  6. Murugan SP, Vijayan C, Ji C et al (2020) Four types of LME cracks in RSW of Zn-coated AHSS. Weld J 75–92

  7. Lee CW, Choi WS, Cho L et al (2015) Liquid-metal-induced embrittlement related microcrack propagation on Zn-coated press hardening steel. ISIJ Int 55:264–271

    Article  CAS  Google Scholar 

  8. Cho L, Kang H, Lee C et al (2014) Microstructure of liquid metal embrittlement cracks on Zn-coated 22MnB5 press-hardened steel. Scr Mater 90:25–28

    Article  Google Scholar 

  9. Kikuta Y, Araki T, Yoneda M, et al (1985) Effect of some factors on time-dependence fracture in molten zinc-liquid-metal embrittlement cracking of steel in hot dip galvanizing. Trans Iron Steel Inst Japan. Iron Steel Inst Japan Keidanren Kaikan 9–4 Otemachi 1-Chome Chiyoda-Ku. B309–B309

  10. Ashiri R, Shamanian M, Salimijazi HR et al (2016) Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twinning induced plasticity steels (Scripta Materialia (2015) 109 (6–10)). Scr Mater 112:156

    Article  CAS  Google Scholar 

  11. Barthelmie J, Schram A, Wesling V (2016) Liquid metal embrittlement in resistance spot welding and hot tensile tests of surface-refined TWIP steels. IOP Conf Ser Mater Sci Eng 118:012002

    Article  Google Scholar 

  12. Ashiri R, Haque MA, Ji C-W et al (2015) Supercritical area and critical nugget diameter for liquid metal embrittlement of Zn-coated twining induced plasticity steels. Scr Mater 109:6–10

    Article  CAS  Google Scholar 

  13. Choi D-Y, Uhm S-H, Enloe CM et al (2017) Liquid metal embrittlement of resistance spot welded 1180TRIP steel-effects of crack geometry on weld mechanical performance. Mater Sci Technol 454–462

  14. DiGiovanni C, Biro E, Zhou NY (2019) Impact of liquid metal embrittlement cracks on resistance spot weld static strength. Sci Technol Weld Join 24(3):218–224

  15. Wintjes E, Macwan A, Biro E et al (2018) Effect of multi-pulse welding on LME severity in RSW joints. Sheet Met Weld Conf XVIII

  16. Wintjes E, DiGiovanni C, He L et al (2019) Quantifying the link between crack distribution and resistance spot weld strength reduction in liquid metal embrittlement susceptible steels. Weld World 63:807–814

    Article  CAS  Google Scholar 

  17. Beal C, Kleber X, Fabregue D et al (2012) Embrittlement of a high manganese TWIP steel in the presence of liquid zinc. Mater Sci Forum 706–709:2041–2046

    Article  Google Scholar 

  18. Bhattacharya D, Cho L, Marshall D et al (2021) Liquid metal embrittlement susceptibility of two Zn-Coated advanced high strength steels of similar strengths. Mater Sci Eng A 823:141569

    Article  CAS  Google Scholar 

  19. Auto/Steel Partnership (2014) A/SP Starting resistance spot weld schedules for AHSS. 1

  20. Razmpoosh MH, DiGiovanni C, Zhou YN et al (2021) Pathway to understand liquid metal embrittlement (LME) in Fe-Zn couple: from fundamentals toward application. Prog Mater Sci 121:100798

    Article  CAS  Google Scholar 

  21. Kim YG, Kim IJ, Kim JS et al (2014) Evaluation of surface crack in resistance spot welds of zn-coated steel. Mater Trans 55:171–175

    Article  CAS  Google Scholar 

  22. American Welding Society (2012) AWS D8.9:2012 Test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials. Miami, FL: American Welding Society

  23. DiGiovanni C, He L, Hawkins C et al (2021) Significance of cutting plane in liquid metal embrittlement severity quantification. SN Appl Sci 3(6):1–8

  24. DiGiovanni C, Biro E (2021) A review of current LME test methods and suggestions for developing a standardized test procedure. Weld World 65:865–884

    Article  CAS  Google Scholar 

  25. Sierlinger R, Gruber M (2016) A cracking good story of liquid metal embrittlement during spot welding of advanced high strength steels. Tech Rep Stahl GmbH

  26. Jung G, Woo IS, Suh DW et al (2016) Liquid Zn assisted embrittlement of advanced high strength steels with different microstructures. Met Mater Int 22:187–195

    Article  CAS  Google Scholar 

  27. Bhattacharya D, Cho L, Ghassemi-Armaki H, et al (2018) Quantitative assessment of the characteristics of liquid metal embrittlement during resistance spot welding of Zn-coated high-strength steels. Sheet Met Weld Conf XVIII. Livonia, MI; 3A – 4

  28. Ashiri R, Shamanian M, Salimijazi HR et al (2016) Liquid metal embrittlement-free welds of Zn-coated twinning induced plasticity steels. Scr Mater 114:41–47

    Article  CAS  Google Scholar 

  29. DiGiovanni C (2021) Liquid metal embrittlement in resistance spot welding: the thermomechanical origin and embrittler transport mechanism. University of Waterloo

  30. Jung G (2015) Liquid metal embrittlement of high Mn TWIP steel. Pohang University of Science and Technology

Download references

Acknowledgements

The authors would like to acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Research Chairs (CRC) program for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. DiGiovanni.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding Solid State Welding And Allied Joining Process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiGiovanni, C., He, L., Pan, H. et al. Predicting liquid metal embrittlement severity in resistance spot welding using hot tensile testing data. Weld World 66, 1705–1714 (2022). https://doi.org/10.1007/s40194-022-01320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-022-01320-6

Keywords

Navigation