Skip to main content

Advertisement

Log in

Current status and development of external energy-assisted friction stir welding processes: a review

  • Review Article
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

This paper summarizes the status of various external energy-assisted friction stir welding techniques developed till date. Preheating the workpiece material through an external energy source helps overcome the drawbacks of conventional Friction stir welding (FSW) processes while welding hard and high melting point materials. External energy is provided in the form of induction heat, laser heat, resistance heat, arc heat, radiation and ultrasonic vibrations. Significant advantages have been observed while using energy-assisted FSW such as extended process window, improved process parameters and mechanical properties, reduced load and tool wear. The current work reviews the experimental setup developed, dominant process parameters involved, enhanced heating obtained in the process, force reductions achieved, mechanical properties and microstructural characterisations of the joints produced in the various attempts taken in this direction. However, the extent of research done on these variants of thermal heating is still in initial phase. Therefore, the challenges faced in the various processes have also been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Venu B, BhavyaSwathi I, Raju LS, Santhanam G (2019) A review on friction stir welding of various metals and its variables. Mater Today: Proc 18:298–302

    Google Scholar 

  2. Verma S, Mishra J (2015) A critical review of friction stir welding process DAAAM International Scientific Book (2015), pp 249–266

  3. Mishra R, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R R50:1–78

    Article  CAS  Google Scholar 

  4. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding - process, weldment structure and properties. Prog Mater Sci 53:980–1023

    Article  CAS  Google Scholar 

  5. Oliveira JP, Ponder K, Brizes E, Abke T, Edwards P, Ramirez AJ (2019) Combining resistance spot welding and friction element welding for dissimilar joining of aluminum to high strength steels. J Mater Process Technol 273:116192

    Article  CAS  Google Scholar 

  6. Gibson BT, Lammlein DH, Prater TJ, Longhurst WR, Cox CD, Ballun MC, Dharmaraj KJ, Cook GE, Strauss AM (2014) Friction stir welding: process, automation, and control. J Manuf Process 16:56–73

    Article  Google Scholar 

  7. Ma ZY, Feng AH, Chen DL, Shen J (2017) Recent advances in friction stir welding/processing of aluminum alloys: microstructural evolution and mechanical properties. Crit Rev Solid State Mater Sci 43:1–65

    CAS  Google Scholar 

  8. Costa AMS, Oliveira JP, Pereira VF, Nunes CA, Ramirez AJ, Tschiptschin AP (2018) Ni-based Mar-M247 superalloy as a friction stir processing tool. J Mater Process Technol 262:605–614

    Article  CAS  Google Scholar 

  9. De PS, Mishra RS (2011) Friction stir welding of precipitation strengthened aluminium alloys: scope and challenges. Sci Technol Weld Join 16:343–347

    Article  CAS  Google Scholar 

  10. Cabibbo M, Forcellese A, Santecchia E, Paoletti C, Spigarelli S, Simoncini M (2020) New approaches to friction stir welding of aluminum light-alloys. Metals 10:233

    Article  CAS  Google Scholar 

  11. Miles MP, Nelson TW, Decker BJ (2004) Formability and strength of friction-stir-welded aluminium sheets. Metall Mater Trans A 35A:3461–3468

    Article  CAS  Google Scholar 

  12. Çam G (2011) Friction stir welded structural materials: beyond Al-alloys. Int Mater Rev 56:1–48

    Article  Google Scholar 

  13. Thomas WM, Threadgill PL, Nicholas ED (1999) Feasibility of friction stir welding steel. Sci Technol Weld Join 4:365–372

    Article  CAS  Google Scholar 

  14. Defalco J, Steel R (2006) Friction stir process now welds steel pipes. Weld J 88(44):47

    Google Scholar 

  15. Liu FC, Hovanski Y, Miles MP, Sorensen CD, Nelson TW (2018) A review of friction stir welding of steels: tool, material flow, microstructure, and properties. J Mater Sci Technol 34:39–57

    Article  CAS  Google Scholar 

  16. Bhadeshia HKDH, DebRoy T (2009) Critical assessment: friction stir welding of steels. Sci Technol Weld Join 14:193–196

    Article  CAS  Google Scholar 

  17. Serindag HT, Kirl BG (2017) Friction stir welding of AZ31 magnesium alloys - a numerical and experimental study. Lat Am J Solids Struct 14:113–130

    Article  Google Scholar 

  18. Sun S-J, Kim J-S, Lee WG, Lim J-Y, Go Y, Kim YM (2017) Influence of friction stir welding on mechanical properties of butt joints of AZ61 magnesium alloy. Adv Mater Sci Eng 2017:1–13

    Google Scholar 

  19. Singh K, Singh G, Singh H (2018) Review on friction stir welding of magnesium alloys. J Magnes Alloys 6:399–416

    Article  CAS  Google Scholar 

  20. Boitsov AG, Pleshakov AS, Siluyanova MV (2020) Friction stir welding of M1 copper alloy in the production of power equipment. Russ Eng Res 40:249–252

    Article  Google Scholar 

  21. Hwang YM, Fan PL, Lin CH (2010) Experimental study on friction stir welding of copper metals. Mater Process Technol 210:1667–1672

    Article  CAS  Google Scholar 

  22. Nagabharam P, Srikanth Rao D, Manoj Kumar J, Gopikrishn N (2018) Investigation of mechanical properties of friction stir welded pure copper plates. Mater Today Proc 5:1264–1270

    Article  CAS  Google Scholar 

  23. Gangwar K, Ramulu M (2018) Friction stir welding of titanium alloys: a review. Mater Des 141:230–255

    Article  CAS  Google Scholar 

  24. DebRoy T, Bhadeshia HKDH (2010) Friction stir welding of dissimilar alloys - a perspective. Sci Technol Weld Join 15:266–270

    Article  Google Scholar 

  25. Mubiayi MP, Akinlabi ET, Makhatha ME (2018) Current state of friction stir spot welding between aluminium and copper. Mater Today: Proc 3:18633–18640

    Google Scholar 

  26. Watanabe T, Takayama H, Yanagisawa A (2007) Joining of aluminum alloy to steel by friction stir welding. J Mater Process Technol 178:342–349

    Article  Google Scholar 

  27. Li B, Zhang Z, Shen Y, Hu W, Luo L (2014) Dissimilar friction stir welding of Ti-6Al-4V alloy and aluminum alloy employing a modified butt joint configuration: Influences of process variables on the weld interfaces and tensile properties. Mater Des 53:838–848

    Article  CAS  Google Scholar 

  28. Md S, Birru AK (2019) Mechanical and metallurgical properties of friction stir welded dissimilar joints of AZ91 magnesium alloy and AA 6082–T6 aluminium alloy. J Magnes Alloy 7:264–271

    Article  Google Scholar 

  29. Wang D, Xiao BL, Ni DR, Ma ZY (2014) Friction stir welding of discontinuously reinforced aluminum matrix composites: a review. Acta Metall Sin 27:816–824

    Article  CAS  Google Scholar 

  30. Steel RJ, Nelson TW, Sorenson CD, Sato YS, Sterling CJ, Packer SM (2007) Friction stir welding of stainless steel and nickel base alloys. ASM Int 111–120

  31. Fallahi AA, Shokuhfar A, OstovariMoghaddam A, Abdolahzadeh A (2017) ‘Analysis of SiC nano-powder effects on friction stir welding of dissimilar Al-Mg alloy to A316L stainless steel. J Manuf Process 30:418–430

    Article  Google Scholar 

  32. Rahbarpour R, Azdast T, Rahbarpour H, Shishavan SM (2014) Feasibility study of friction stirs welding of wood-plastic composites. Sci Technol Weld Join 19:673–681

    Article  Google Scholar 

  33. Kumar N, Das A, Prasad SB (2020) An analysis of friction stir welding (FSW) of metal matrix composites (MMCs). Mater Today: Proc 26:2650–2656

    CAS  Google Scholar 

  34. Verma S, Gupta M, Misra JP (2016) Friction stir welding of aerospace materials: a state of art review. Int Sci Book 13:135–150

    Google Scholar 

  35. Tutum CC, Hattel JH (2011) Numerical optimisation of friction stir welding: review of future challenges. Sci Technol Weld Join 16:318–324

    Article  Google Scholar 

  36. Uyyuru RK, Kailas SV (2006) Numerical analysis of friction stir welding process. J Mater Eng Perform 15:505–518

    Article  CAS  Google Scholar 

  37. Subhashini PVS, Manas YNC (2018) Analysis and optimization of parameters for friction stir welding. Mater Today: Proc 5:12376–12383

    CAS  Google Scholar 

  38. Doude H, Schneider J, Patton B, Stafford S, Waters T, Varner C (2015) Optimizing weld quality of a friction stir welded aluminum alloy. J Mater Process Technol 222:188–196

    Article  CAS  Google Scholar 

  39. Liao TW, Daftardar S (2009) Model based optimisation of friction stir welding processes. Sci Technol Weld Join 14:426–435

    Article  CAS  Google Scholar 

  40. Thomas WM, Staines DG, Norris IM, de Frias R (2003) Friction stir welding tools and developments. Weld World 47:10–17

    Article  Google Scholar 

  41. Thomas WM, Johnson KI, Wiesner CS (2003) Friction stir welding — recent developments in tool and process technologies. Adv Eng Mater 5:485–490

    Article  Google Scholar 

  42. Rowe CED, Thomas WM (2005) Advances in tooling materials for friction stir welding. TWI and Cedar Metals Ltd, pp 1–11

  43. Fuller CB (2007) Friction stir tooling: tool materials and designs. Friction stir welding and processing 7

  44. Rai R, De A, Bhadeshia HKDH, DebRoy T (2011) Review: friction stir welding tools. Sci Technol Weld Join 16:325–342

    Article  CAS  Google Scholar 

  45. Zhang YN, Cao X, Larose S, Wanjara P (2012) Review of tools for friction stir welding and processing. Can Metall Q 51:250–261

    Article  CAS  Google Scholar 

  46. Trimble D, Mitrogiannopoulos H, O’Donnell G, Mcfadden S (2015) ’Friction stir welding of AA2024-T3 plate – the influence of different pin types’. Mech Sci 6:51–55

    Article  Google Scholar 

  47. Pedapati SR, Faozi A, Bawazir O, Awang M, Abdul-Rani A-M (2016) Effect of tool geometrical parameters on friction stir welding joint properties of aluminium alloy AA6061. J Eng Appl Sci 11:13053–13058

    Google Scholar 

  48. Yang M, Bao R-J, Liu X-Z, Song C-Q (2019) Thermo-mechanical interaction between aluminum alloy and tools with different profiles during friction stir welding. Trans Nonferrous Metals Soc 29:495–506

    Article  CAS  Google Scholar 

  49. Joshi S, Namjoshi S, Paliwal D (2020) Effect of tool geometry on friction stir Welded 6061 aluminum alloy. Mater Today: Proc 24:738–745

    CAS  Google Scholar 

  50. Mugada KK, Adepu K (2018) Influence of tool shoulder end features on friction stir weld characteristics of Al-Mg-Si alloy. Int J Adv Manuf Technol 99:1553–1566

    Article  Google Scholar 

  51. Lakshminarayanan AK, Balasubramanian V (2008) Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique. Trans Nonferrous Metals Soc 18:548–554

    Article  CAS  Google Scholar 

  52. Prasad MVRD, Namala KK (2018) Process parameters optimization in friction stir welding by ANOVA. Mater Today: Proc 5:4824–4831

    Google Scholar 

  53. Hameed A, Hussein A-B (2019) Optimization of process parameters of friction stir welding by Taguchi Method 7:17–23

  54. Konig W, Neises A (1993) Wear mechanisms of ultrahard, nonmetallic cutting materials. Wear 162:12–21

    Article  Google Scholar 

  55. Thompson B, Babu S (2010) Sudarsanam: ‘Tool degradation characterization in the friction stir welding of hard metals.’ Weld J 89:256–261

    Google Scholar 

  56. Wang J, Su J, Mishra RS, Xu R, Baumann JA (2014) Tool wear mechanisms in friction stir welding of Ti-6Al-4V alloy. Wear 321:25–32

    Article  CAS  Google Scholar 

  57. Sahlot P, Mishra RS, Arora A (2019) ‘Wear mechanism for H13 steel tool during friction stir welding of CuCrZr Alloy’. Friction Stir Weld Process X 59–64

  58. Padro RA, Murr LE, Shindo DJ, Soto KF (2001) Tool wear in friction-stir welding of aluminium alloy 6061+20% Al2O3: a preliminary study. Scr Mater 45(1):75–80

  59. Nasresfahani R, Soltanipur AR, Farmanesh K, Ghasemi A (2017) Effects of tool wear on friction stir welded joints of Ti–6Al–4V alloy. Mater Sci Technol 33:583–591

    Article  CAS  Google Scholar 

  60. Liu HJ, Feng JC, Fujii H, Nogi K (2005) Wear characteristics of a WC-Co tool in friction stir welding of AC4A+30 vol%SiCp composite. Int J Mach Tools Manuf 45:1635–1639

    Article  Google Scholar 

  61. Sahlot P, Jha K, Dey GK, Arora A (2018) Wear-induced changes in FSW Tool pin profile: effect of process parameters. Metall Mater Trans A 49:2139–2150

    Article  CAS  Google Scholar 

  62. Tarasov SY, Rubtsov VE, Kolubaev EA (2014) The effect of friction stir welding tool wear on the weld quality of aluminum alloy AMg5M. AIP Conf Proc 1623:635–638

    Article  Google Scholar 

  63. Bist A, Saini JS, Sharma B (2016) A review of tool wear prediction during friction stir welding of aluminium matrix composite. Trans Nonferrous Metals Soc 26:2003–2018

    Article  CAS  Google Scholar 

  64. Hasan AF, Bennett CJ, Shipway PH, Cater S, Martin J (2017) A numerical methodology for predicting tool wear in friction stir welding. J. Mater Process Technol 241:129–140

    Article  CAS  Google Scholar 

  65. Siddiquee N, Pandey S (2014) Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel. Int J Adv Manuf Technol 73:479–486

    Article  Google Scholar 

  66. Fernandez GJ, Murr LE (2004) Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite. Mater Charact 52:65–75

    Article  CAS  Google Scholar 

  67. Padhy GK, Wu CS, Gao S (2015) Auxiliary energy assisted friction stir welding – Status review. Sci Technol Weld Join 20:631–649

    Article  CAS  Google Scholar 

  68. Sun YF, Fujii H (2011) Recent patented hybrid techniques for friction stir welding of metallic materials. Recent Pat Mech Eng 3:206–210

    Article  Google Scholar 

  69. Patel M, Patel D, Patel S (2015) A review on effect of preheating on 6061 T–6 AL using friction stir welding by RSM method. Indian J Appl Res X 5:18–19

    Google Scholar 

  70. Mohan DG, Gopi S (2018) Induction assisted friction stir welding: a review. Aust J Mech Eng 18:1–5

    Google Scholar 

  71. Kranjc M, Zupanic A, Jarm T, Miklavcic D (2009) ‘Optimization of induction heating using numerical modeling and genetic algorithm’, 2009 35th Annual Conference of IEEE Industrial Electronics, 2104–2108

  72. Ikram A, Arif N, Chung H (2016) Design of an induction system for induction assisted alternating current gas metal arc welding. J Mater Process Technol 231:162–170

    Article  CAS  Google Scholar 

  73. Masserey A, Rappaz J, Rozsnyo R, Touzani R (2004) Optimal control of an induction heating Process for thixoforming. IEEE Trans Magn 40(3):1664–1671

    Article  Google Scholar 

  74. Tweedy M, Arbegast W, Allen C (2005) ‘Friction stir welding of ferrous alloys using induction preheating’, Friction stir welding and processing III’: TMS Annual Meet., San Francisco, CA, USA,, TMS, 97–104

  75. Oeystein G, Ove KA, Midling OT, Hydro N (1999) ‘Modified friction stir welding’, International patent application no. WO1999039861 A1

  76. Sinclair PC, Longhurst WR, Cox ChD, Lammlein DH (2010) Heated friction stir welding: an experimental and theoretical investigation into how preheating influences process forces. Mater Manuf Process 25(11):1283–1291

    Article  CAS  Google Scholar 

  77. Alvarez I, Garcia M, Pena G, Sotelo J, Verdera D (2014) Evaluation of an induction-assisted friction stir welding technique for super duplex stainless steels. Surf Interface Anal 46(10–11):892–896

    Article  CAS  Google Scholar 

  78. Álvarez A, Cid V, Pena G, Sotelo J, Verdera D (2013) In: Mishra RS, Mahoney MW, Sato Y, Hovannski Y, Verma R (eds.) Friction Stir Processing VII. TMS, Wiley, USA. 117–127

  79. Cheon J, Park T, Yoon J-y, Kim C (2019) Evaluation of a high-frequency induction heating assisted friction stir welding process on carbon steel sheets. J Weld Join 37:501–507

    Article  Google Scholar 

  80. Mohan DG, Gopi S, Rajasekar V (2018) ‘Effect of induction heated friction stir welding on corrosive behaviour, mechanical properties and microstructure of AISI 410 stainless steel’, Indian. J Eng Mater Sci 25:203–208

    CAS  Google Scholar 

  81. Vijendra B, Sharma A (2015) Induction heated tool assisted friction-stir welding (i-FSW): a novel hybrid process for joining of thermoplastics. J Manuf Process 20:234–244

    Article  Google Scholar 

  82. Mach M, Holger S, Nacke B (2007) Induction assisted welding processes. Heat Proc 2:156–9

    Google Scholar 

  83. Sadeghipour K, Dopkin JA, Li K (1996) A computer aided finite element/experimental analysis of induction heating process of steel. Comput Ind 28:195–205

    Article  Google Scholar 

  84. Kaushik P, Dwivedi DK (2021) Induction preheating in FSW of Al-Steel combination. Mater Today: Proc 46:1091–1095

    CAS  Google Scholar 

  85. Mishra RS, Mahoney MW (2007) ‘Friction stir welding and processing’. ASM international, Materials Park. OH 44073-0002. Printed in the United States of America

  86. Casalino G, Campanelli S, Ludovico AD, Contuzzi N, Angelastro A (2012) "Study of a fiber laser assisted friction stir welding process," Proc. SPIE 8239, High Power Laser Materials Processing: Lasers, Beam Delivery, Diagnostics, and Applications, 823913

  87. Cabage B (2006) “New way to weld.” Oak Ridge National Laboratory Reporter. No. 84

  88. Palm F (2004) “Laser supported friction stir welding method.” United States Patent 6,793,118

  89. Chang WS, Rajesh SR, Chun CK, Kim HJ (2011) Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al Alloy and AZ31 Mg Alloy. J Mater Sci Technol 27(3):199–204

    Article  CAS  Google Scholar 

  90. Able N, Pfefferkorn F (2005) ‘Laser-assisted friction stir lap welding of aluminum’. Proc. 2005 ASME Summer Heat Transfer Conf., San Francisco, CA, USA, ASME, Paper HT2005-72829

  91. Merklein M, Giera A (2008) Laser assisted friction stir welding of drawable steel-aluminium tailored hybrids. Int J Mater Form 1:1299–1302

    Article  Google Scholar 

  92. Campanelli SL, Casalino G, Casavola C, Moramarco V (2013) Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy. Materials 6(12):5923–5941

    Article  Google Scholar 

  93. Kohn G, Greenberg Y, Makover I, Munitz A (2002) Laser assisted friction stir welding. Weld J 81:46–48

    Google Scholar 

  94. Wada T, Morisada Y, Sun YF, Kawahito Y, Matsushita M, Ikeda R (2020) Friction stir welding of medium carbon steel with laser-preheating. ISIJ International 60:153–159

    Article  CAS  Google Scholar 

  95. Sun YF, Konishi Y, Kamai M, Fujii H (2013) Microstructure and mechanical properties of S45C steel prepared by laser-assisted friction stir welding. Mater Des 47:842–849

    Article  CAS  Google Scholar 

  96. Casavola C, Cazzato A, Moramarco V (2014) ‘Thermographical analysis of friction stir welding and laser assisted friction stir welding’. Proc. 13th Youth Symp. on ‘Experimental solid mechanics. Deˇcˇı´n, Czech Republic, , Za´mecka´ Sy´pka, 15–19

  97. Song KH, Nakata K (2011) Development of microstructure and mechanical properties of hybrid friction-stir-welded Ni-Base superalloy. Korean Weld Join Soc 29:47–53

    Google Scholar 

  98. Song H, Tsumura T, Nakata K (2009) Development of microstructure and mechanical properties in laser-FSW hybrid welded Inconel 600. Mater Trans 50(7):1832–1837

    Article  CAS  Google Scholar 

  99. Fujii H, Tatsuno T, Tsumura T, Tanaka M, Nakata K (2008) Hybrid friction stir welding of carbon steel. Mater Sci Forum 580:393–396

    Article  Google Scholar 

  100. Fei X, Wu Z (2018) Research of temperature and microstructure in friction stir welding of Q235 steel with laser-assisted heating. Results Phys 11:1048–1051

    Article  Google Scholar 

  101. Ahmad B, Galloway A, Toumpis A (2019) Numerical optimisation of laser assisted friction stir welding of structural steel. Sci Technol Weld Join 24:548–558

    Article  CAS  Google Scholar 

  102. Daftardar S (2005) ‘Laser assisted friction stir welding: finite volume method and metaheuristic optimization’, PhD thesis, Louisiana State University, Baton Rouge, LA, USA 1–93

  103. Spinella DJ, Streicher ET, Kastelic R (1998) ‘Resistance heated stir welding’. US patent no. 5 829 664, published 3 November 1998

  104. Ferrando WA (2008) ‘The concept of electrically assisted friction stir welding (EAFSW) and application to the processing of various metals’, Report no. NSWCCD-61-TR-2008/13, Naval Surface Warfare Center Carderock Division, West Bethesda, Maryland, USA

  105. Liu X, Lan S, Ni J (2015) Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J Mater Process Technol 219:112–123

    Article  CAS  Google Scholar 

  106. Chen S, Zhang H, Jiang X, Yuan T, Han Y, Li X (2019) Mechanical properties of electric assisted friction stir welded 2219 aluminum alloy. J Manuf Process 44:197–206

    Article  Google Scholar 

  107. Han Y, Jiang X, Chen S, Yuan T, Zhang H, Bai Y, Xiang Y, Li X (2019) ‘Microstructure and mechanical properties of electrically assisted friction stir welded AZ31B alloy’ joints. J Manuf Process Part A 43:26–34

    Article  Google Scholar 

  108. Sengupta K, Singh DK, Mondal AK, Bose D, Ghosh B (2020) Analysis of mechanical property of electrically assisted friction stir welding to enhance the efficiency of joints. Mater Today: Proc 38:2263–2270

    Google Scholar 

  109. Santos TG, Miranda RM, Vilaca P (2014) Friction stir welding assisted by electrical Joule effect. J. Mater Process Technol 214:2127–2133

    Article  CAS  Google Scholar 

  110. Luo J, Chen W, Fu G (2014) Hybrid-heat effects on electrical current aided friction stir welding of steel, and Al and Mg alloys. J Mater Process Technol 214:3002–3012

    Article  CAS  Google Scholar 

  111. Long X, Khanna SK (2005) Modelling of electrically enhanced friction stir welding process using finite element method. Sci Technol Weld Join 10:482–487

    Article  CAS  Google Scholar 

  112. Han Y, Chen SJ et al (2021) Effect of microstructure, texture and deformation behavior on tensile properties of electrically assisted friction stir welded Ti-6Al-4 V joints. Mater Charact 176:111–141

    Article  Google Scholar 

  113. Jiang X, Han Y, Chen SJ et al (2020) Microstructure and texture investigation on electrically assisted friction stir welded titanium alloy. Mater Sci Technol 36(15):1–11

    Article  Google Scholar 

  114. Oliveira JP, Duarte JF, Inácio Patrick, Schell N, Miranda RM, Santos Telmo G (2017) Production of Al/NiTi composites by friction stir welding assisted by electrical current. Mater Des 113:311–318

    Article  CAS  Google Scholar 

  115. Kou S, Cao GP (2006) ‘Arc-enhanced friction stir welding’. US7078647

  116. Bang HS, Bang HS, Jeon GH, Oh IH, Ro CS (2012) Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel. Mater Des 37:48–55

    Article  CAS  Google Scholar 

  117. Bang HS, Bang HS, Song HJ, Joo SM (2013) Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti-6%Al-4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding. Mater Des 51:544–551

    Article  CAS  Google Scholar 

  118. Joo SM (2013) Joining of dissimilar AZ31B magnesium alloy and SS400 mild steel by hybrid gas tungsten arc friction stir welding. Met Mater Int 19:1251–1257

    Article  CAS  Google Scholar 

  119. Yaduwanshi D, Bag S, Pal S (2014) Effect of preheating in hybrid friction stir welding of aluminum alloy. J Mater Eng Perform 23:3794–3803

    Article  CAS  Google Scholar 

  120. Li X, Chen S, Yuan T, Jiang X, Han Y (2020) Improving the properties of friction stir welded 2219–T87 aluminum alloy with GTA offset preheating. J Manuf Process 51:10–18

    Article  Google Scholar 

  121. Scutelnicu E, Birsan D, Cojocaru R (2012) ‘Research on friction stir welding and tungsten inert gas assisted friction stir welding of copper’. Recent Adv Manuf Eng 97–102

  122. Amini S, Amiri MR (2014) Study of ultrasonic vibrations’ effect on friction stir welding. Int J Adv Manuf Technol 73:127–135

    Article  Google Scholar 

  123. Park K (2009) Development and analysis of ultrasonic assisted friction stir welding process (Doctoral dissertation, University of Michigan)

  124. Liu XC, Wu CS, Padhy GK (2015) Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scr Mater 102:95–98

    Article  Google Scholar 

  125. Liu XC, Wu CS, Padhy GK (2015) Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding. Sci Technol Weld Join 20:345–352

    Article  CAS  Google Scholar 

  126. Ma HK, He DQ, Liu JS (2015) Ultrasonically assisted friction stir welding of aluminium alloy 6061. Sci Technol Weld Join 20:216–221

    Article  CAS  Google Scholar 

  127. Strass B, Wagner G, Conrad C, Wolter B, Benfer S, Fuerbeth W (2014) Realization of Al/Mg-hybrid-joints by ultrasound supported friction stir welding - mechanical properties, microstructure and corrosion behaviour. Adv Mater Res 966–967:521–535

    Article  Google Scholar 

  128. Muhammad NA, Wu CS (2019) Ultrasonic vibration assisted friction stir welding of aluminium alloy and pure copper. J Manuf Process 39:114–127

    Article  Google Scholar 

  129. Zhang Z, He C, Li Y, Yu L, Zhao S, Zhao X (2020) Effects of ultrasonic assisted friction stir welding on flow behavior, microstructure and mechanical properties of 7N01-T4 aluminium alloy joints. J Mater Sci Technol 43:1–13

    Article  Google Scholar 

  130. Hong K, Wang Y, Zhou J, Zhou C, Wang L (2021) Investigation on ultrasonic assisted friction stir welding of aluminum/steel dissimilar alloys. High Temp Mater Process 40:45–52

    Article  CAS  Google Scholar 

  131. Thomä M, Wagner G, Straß B, Wolter B, Benfer S, Fürbeth W (2018) Ultrasound enhanced friction stir welding of aluminum and steel: Process and properties of EN AW 6061/DC04-Joints. J Mater Sci Technol 34:163–172

    Article  Google Scholar 

  132. Meng X, Jin Y, Ji S, Yan D (2018) Improving friction stir weldability of Al/Mg alloys via ultrasonically diminishing pin adhesion. J Mater Sci Technol 34:1817–1822

    Article  CAS  Google Scholar 

  133. Rice RR, Vetrovec J (2004) ’Radiation assisted friction welding’. US6776328

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranamay Saha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, R., Biswas, P. Current status and development of external energy-assisted friction stir welding processes: a review. Weld World 66, 577–609 (2022). https://doi.org/10.1007/s40194-021-01228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01228-7

Keywords

Navigation