Skip to main content
Log in

Detecting Copy Number Variation via Next Generation Technology

  • Cytogenetics (CL Martin and E Williams, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Copy number variants (CNVs), gains and losses of segments of genomic DNA associated with normal phenotypic variation and disease states, are traditionally detected using chromosomal microarrays. Recent bioinformatic advances now allow for the detection of CNVs using next generation sequencing (NGS) data, greatly increasing the clinical utility of NGS tests.

Recent Findings

Though not widespread, clinical diagnostic laboratories have started to implement CNV detection from targeted NGS gene panels and whole exome sequencing data, despite some limitations. Multiple tools have been designed to overcome these limitations, with some promising results. However, no single tool yet enables the high sensitivity and specificity needed to make it more than a supplementary assay for clinical laboratories.

Summary

As sequencing costs drop and sequencing technologies improve, some of these shortcomings may be overcome by whole genome sequencing or long-read sequencing technologies. Here, we review methods used to detect CNVs from NGS data, including studies comparing their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7(2):85–97. doi:10.1038/nrg1767.

    Article  CAS  PubMed  Google Scholar 

  2. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–54. doi:10.1038/nature05329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Itsara A, Cooper GM, Baker C, Girirajan S, Li J, Absher D, et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet. 2009;84(2):148–61. doi:10.1016/j.ajhg.2008.12.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36(9):949–51. doi:10.1038/ng1416.

    Article  CAS  PubMed  Google Scholar 

  5. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525–8. doi:10.1126/science.1098918.

    Article  CAS  PubMed  Google Scholar 

  6. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464(7289):704–12. doi:10.1038/nature08516.

    Article  CAS  Google Scholar 

  7. Marques-Bonet T, Kidd JM, Ventura M, Graves TA, Cheng Z, Hillier LW, et al. A burst of segmental duplications in the genome of the African great ape ancestor. Nature. 2009;457(7231):877–81. doi:10.1038/nature07744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McLean CY, Reno PL, Pollen AA, Bassan AI, Capellini TD, Guenther C, et al. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature. 2011;471(7337):216–9. doi:10.1038/nature09774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trask BJ, Massa H, Brand-Arpon V, Chan K, Friedman C, Nguyen OT, et al. Large multi-chromosomal duplications encompass many members of the olfactory receptor gene family in the human genome. Hum Mol Genet. 1998;7(13):2007–20.

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen DQ, Webber C, Ponting CP. Bias of selection on human copy-number variants. PLoS Genet. 2006;2(2):e20. doi:10.1371/journal.pgen.0020020.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Watson CT, Marques-Bonet T, Sharp AJ, Mefford HC. The genetics of microdeletion and microduplication syndromes: an update. Annu Rev Genomics Hum Genet. 2014;15:215–44. doi:10.1146/annurev-genom-091212-153408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Speleman F, Kumps C, Buysse K, Poppe B, Menten B, De Preter K. Copy number alterations and copy number variation in cancer: close encounters of the bad kind. Cytogenet Genome Res. 2008;123(1–4):176–82. doi:10.1159/000184706.

    CAS  PubMed  Google Scholar 

  13. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64. doi:10.1016/j.ajhg.2010.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Committee Opinion No. 581: the use of chromosomal microarray analysis in prenatal diagnosis. Obstet Gynecol. 2013;122(6):1374–7. doi:10.1097/01.AOG.0000438962.16108.d1.

  15. Manning M, Hudgins L. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med. 2010;12(11):742–5. doi:10.1097/GIM.0b013e3181f8baad.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aradhya S, Lewis R, Bonaga T, Nwokekeh N, Stafford A, Boggs B, et al. Exon-level array CGH in a large clinical cohort demonstrates increased sensitivity of diagnostic testing for Mendelian disorders. Genet Med. 2012;14(6):594–603. doi:10.1038/gim.2011.65.

    Article  CAS  PubMed  Google Scholar 

  17. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR et al. Library construction for next-generation sequencing: overviews and challenges. Biotechniques. 2014;56(2):61–4, 6, 8, passim. doi:10.2144/000114133.

  18. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, et al. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;7(2):111–8. doi:10.1038/nmeth.1419.

    Article  CAS  PubMed  Google Scholar 

  19. Kozarewa I, Armisen J, Gardner AF, Slatko BE, Hendrickson CL. Overview of Target Enrichment Strategies. Curr Protoc Mol Biol. 2015;112:7 21 1–3. doi:10.1002/0471142727.mb0721s112.

  20. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al. Breakdancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods. 2009;6(9):677–81. doi:10.1038/nmeth.1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 2009;19(9):1586–92. doi:10.1101/gr.092981.109.

    Article  CAS  PubMed Central  Google Scholar 

  22. Pirooznia M, Goes FS, Zandi PP. Whole-genome CNV analysis: advances in computational approaches. Front Genet. 2015;6:138. doi:10.3389/fgene.2015.00138.

  23. Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40(10):e72. doi:10.1093/nar/gks001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011;12(2):R18. doi:10.1186/gb-2011-12-2-r18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tewhey R, Nakano M, Wang X, Pabon-Pena C, Novak B, Giuffre A, et al. Enrichment of sequencing targets from the human genome by solution hybridization. Genome Biol. 2009;10(10):R116. doi:10.1186/gb-2009-10-10-r116.

    Article  PubMed  PubMed Central  Google Scholar 

  26. • Retterer K, Scuffins J, Schmidt D, Lewis R, Pineda-Alvarez D, Stafford A et al. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort. Genet Med. 2015;17(8):623–9. doi:10.1038/gim.2014.160. This paper demonstrates the benefits of detecting CNVs from WES data in clinical cohorts.

  27. • Pugh TJ, Amr SS, Bowser MJ, Gowrisankar S, Hynes E, Mahanta LM et al. VisCap: inference and visualization of germ-line copy-number variants from targeted clinical sequencing data. Genet Med. 2015. doi:10.1038/gim.2015.156. This paper validates a read depth CNV-detection method for targeted NGS gene panel data from constitutional samples.

  28. Dohm JC, Lottaz C, Borodina T, Himmelbauer H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 2008;36(16):e105. doi:10.1093/nar/gkn425.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M, Turner DJ. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G + C)-biased genomes. Nat Methods. 2009;6(4):291–5. doi:10.1038/nmeth.1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boeva V, Zinovyev A, Bleakley K, Vert JP, Janoueix-Lerosey I, Delattre O, et al. Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinformatics. 2011;27(2):268–9. doi:10.1093/bioinformatics/btq635.

    Article  CAS  PubMed  Google Scholar 

  31. • Feng Y, Chen D, Wang GL, Zhang VW, Wong LJ. Improved molecular diagnosis by the detection of exonic deletions with target gene capture and deep sequencing. Genet Med. 2015;17(2):99–107. doi:10.1038/gim.2014.80. This paper validates a read depth CNV-detection method for targeted NGS gene panel data from constitutional samples.

  32. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11(10):733–9. doi:10.1038/nrg2825.

    Article  CAS  PubMed  Google Scholar 

  33. Chiang DY, Getz G, Jaffe DB, O’Kelly MJ, Zhao X, Carter SL, et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat Methods. 2009;6(1):99–103. doi:10.1038/nmeth.1276.

    Article  CAS  PubMed  Google Scholar 

  34. Xi R, Hadjipanayis AG, Luquette LJ, Kim TM, Lee E, Zhang J, et al. Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion. Proc Natl Acad Sci USA. 2011;108(46):E1128–36. doi:10.1073/pnas.1110574108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21(6):974–84. doi:10.1101/gr.114876.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9. doi:10.1038/nature07517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Medvedev P, Stanciu M, Brudno M. Computational methods for discovering structural variation with next-generation sequencing. Nat Methods. 2009;6(11 Suppl):S13–20. doi:10.1038/nmeth.1374.

    Article  CAS  PubMed  Google Scholar 

  38. Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, Zhang Z, et al. PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol. 2009;10(2):R23. doi:10.1186/gb-2009-10-2-r23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Talkowski ME, Ordulu Z, Pillalamarri V, Benson CB, Blumenthal I, Connolly S, et al. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N Engl J Med. 2012;367(23):2226–32. doi:10.1056/NEJMoa1208594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Talkowski ME, Ernst C, Heilbut A, Chiang C, Hanscom C, Lindgren A, et al. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am J Hum Genet. 2011;88(4):469–81. doi:10.1016/j.ajhg.2011.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abel HJ, Duncavage EJ. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. Cancer Genet. 2013;206(12):432–40. doi:10.1016/j.cancergen.2013.11.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang ZD, Du J, Lam H, Abyzov A, Urban AE, Snyder M, et al. Identification of genomic indels and structural variations using split reads. BMC Genom. 2011;12:375. doi:10.1186/1471-2164-12-375.

    Article  Google Scholar 

  43. Alkan C, Sajjadian S, Eichler EE. Limitations of next-generation genome sequence assembly. Nat Methods. 2011;8(1):61–5. doi:10.1038/nmeth.1527.

    Article  CAS  PubMed  Google Scholar 

  44. Pop M, Phillippy A, Delcher AL, Salzberg SL. Comparative genome assembly. Brief Bioinform. 2004;5(3):237–48.

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Zheng H, Luo R, Wu H, Zhu H, Li R, et al. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nat Biotechnol. 2011;29(8):723–30. doi:10.1038/nbt.1904.

    Article  CAS  PubMed  Google Scholar 

  46. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y, Okuno M, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24(8):1384–95. doi:10.1101/gr.170720.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bansal V, Dorn C, Grunert M, Klaassen S, Hetzer R, Berger F, et al. Outlier-based identification of copy number variations using targeted resequencing in a small cohort of patients with Tetralogy of Fallot. PLoS ONE. 2014;9(1):e85375. doi:10.1371/journal.pone.0085375.

    Article  PubMed  PubMed Central  Google Scholar 

  48. • Boeva V, Popova T, Lienard M, Toffoli S, Kamal M, Le Tourneau C et al. Multi-factor data normalization enables the detection of copy number aberrations in amplicon sequencing data. Bioinformatics. 2014;30(24):3443–50. doi:10.1093/bioinformatics/btu436. This paper validates a read depth CNV-detection method for amplicon-based targeted NGS gene panel data.

  49. • Reinecke F, Satya RV, DiCarlo J. Quantitative analysis of differences in copy numbers using read depth obtained from PCR-enriched samples and controls. BMC Bioinform. 2015;16:17. doi:10.1186/s12859-014-0428-5. This paper validates a read depth CNV-detection method for amplicon-based targeted NGS gene panel data.

  50. Krumm N, Sudmant PH, Ko A, O’Roak BJ, Malig M, Coe BP, et al. Copy number variation detection and genotyping from exome sequence data. Genome Res. 2012;22(8):1525–32. doi:10.1101/gr.138115.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Doyle LA, Wong KK, Bueno R, Dal Cin P, Fletcher JA, Sholl LM, et al. Ewing sarcoma mimicking atypical carcinoid tumor: detection of unexpected genomic alterations demonstrates the use of next generation sequencing as a diagnostic tool. Cancer Genet. 2014;207(7–8):335–9. doi:10.1016/j.cancergen.2014.08.004.

    Article  CAS  PubMed  Google Scholar 

  52. • Abo RP, Ducar M, Garcia EP, Thorner AR, Rojas-Rudilla V, Lin L et al. BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers. Nucleic Acids Res. 2015;43(3):e19. doi:10.1093/nar/gku1211. This paper describes a tool to detect structrual variants, including translocations, from amplicon-based targeted NGS gene panel data.

  53. Duncavage EJ, Abel HJ, Szankasi P, Kelley TW, Pfeifer JD. Targeted next generation sequencing of clinically significant gene mutations and translocations in leukemia. Mod Pathol. 2012;25(6):795–804. doi:10.1038/modpathol.2012.29.

    Article  CAS  PubMed  Google Scholar 

  54. Ng SB, Nickerson DA, Bamshad MJ, Shendure J. Massively parallel sequencing and rare disease. Hum Mol Genet. 2010;19(R2):R119–24. doi:10.1093/hmg/ddq390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stark Z, Tan TY, Chong B, Brett GR, Yap P, Walsh M, et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet Med. 2016;. doi:10.1038/gim.2016.1.

    Google Scholar 

  56. van Zelst-Stams WA, Scheffer H, Veltman JA. Clinical exome sequencing in daily practice: 1,000 patients and beyond. Genome Med. 2014;6(1):2. doi:10.1186/gm521.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Valencia CA, Husami A, Holle J, Johnson JA, Qian Y, Mathur A, et al. Clinical impact and cost-effectiveness of whole exome sequencing as a diagnostic tool: a pediatric center’s experience. Front Pediatr. 2015;3:67. doi:10.3389/fped.2015.00067.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hwang MY, Moon S, Heo L, Kim YJ, Oh JH, Kim YK, et al. Combinatorial approach to estimate copy number genotype using whole-exome sequencing data. Genomics. 2015;105(3):145–9. doi:10.1016/j.ygeno.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  59. de Ligt J, Boone PM, Pfundt R, Vissers LE, Richmond T, Geoghegan J, et al. Detection of clinically relevant copy number variants with whole-exome sequencing. Hum Mutat. 2013;34(10):1439–48. doi:10.1002/humu.22387.

    Article  PubMed  Google Scholar 

  60. Samarakoon PS, Sorte HS, Kristiansen BE, Skodje T, Sheng Y, Tjonnfjord GE, et al. Identification of copy number variants from exome sequence data. BMC Genom. 2014;15:661. doi:10.1186/1471-2164-15-661.

    Article  Google Scholar 

  61. Guo Y, Sheng Q, Samuels DC, Lehmann B, Bauer JA, Pietenpol J, et al. Comparative study of exome copy number variation estimation tools using array comparative genomic hybridization as control. Biomed Res Int. 2013;2013:915636. doi:10.1155/2013/915636.

    PubMed  PubMed Central  Google Scholar 

  62. Nam JY, Kim NK, Kim SC, Joung JG, Xi R, Lee S, et al. Evaluation of somatic copy number estimation tools for whole-exome sequencing data. Brief Bioinform. 2016;17(2):185–92. doi:10.1093/bib/bbv055.

    Article  PubMed  Google Scholar 

  63. •• Amarasinghe KC, Li J, Hunter SM, Ryland GL, Cowin PA, Campbell IG et al. Inferring copy number and genotype in tumour exome data. BMC Genomics. 2014;15:732. doi:10.1186/1471-2164-15-732. This paper describes a read depth and B allele frequency analysis method to determine CNVs, loss of heterozygosity, ploidy, and tumor purity for WES data from cancer samples.

  64. Kadalayil L, Rafiq S, Rose-Zerilli MJ, Pengelly RJ, Parker H, Oscier D, et al. Exome sequence read depth methods for identifying copy number changes. Brief Bioinform. 2015;16(3):380–92. doi:10.1093/bib/bbu027.

    Article  PubMed  Google Scholar 

  65. Alkodsi A, Louhimo R, Hautaniemi S. Comparative analysis of methods for identifying somatic copy number alterations from deep sequencing data. Brief Bioinform. 2015;16(2):242–54. doi:10.1093/bib/bbu004.

    Article  PubMed  Google Scholar 

  66. Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, Ruderfer DM, et al. Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am J Hum Genet. 2012;91(4):597–607. doi:10.1016/j.ajhg.2012.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics. 2012;28(3):423–5. doi:10.1093/bioinformatics/btr670.

    Article  CAS  PubMed  Google Scholar 

  68. Amarasinghe KC, Li J, Halgamuge SK. CoNVEX: copy number variation estimation in exome sequencing data using HMM. BMC Bioinform. 2013;14(Suppl 2):S2. doi:10.1186/1471-2105-14-S2-S2.

    Article  Google Scholar 

  69. Zhao M, Wang Q, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinform. 2013;14(Suppl 11):S1. doi:10.1186/1471-2105-14-S11-S1.

    Article  Google Scholar 

  70. Tan R, Wang Y, Kleinstein SE, Liu Y, Zhu X, Guo H, et al. An evaluation of copy number variation detection tools from whole-exome sequencing data. Hum Mutat. 2014;35(7):899–907. doi:10.1002/humu.22537.

    Article  CAS  PubMed  Google Scholar 

  71. Stavropoulos DJ, Merico D, Jobling R, Bowdin S, Monfared N, Thiruvahindrapuram B, et al. Whole-genome sequencing expands diagnostic utility and improves clinical management in paediatric medicine. Npj Genomic Med. 2016;1:15012. doi:10.1038/npjgenmed.2015.12.

    Article  Google Scholar 

  72. Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344–7. doi:10.1038/nature13394.

    Article  CAS  PubMed  Google Scholar 

  73. Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES? Hum Genet. 2016;135(3):359–62. doi:10.1007/s00439-015-1631-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lelieveld SH, Spielmann M, Mundlos S, Veltman JA, Gilissen C. Comparison of exome and genome sequencing technologies for the complete capture of protein-coding regions. Hum Mutat. 2015;36(8):815–22. doi:10.1002/humu.22813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Henry VJ, Bandrowski AE, Pepin AS, Gonzalez BJ, Desfeux A. OMICtools: an informative directory for multi-omic data analysis. Database (Oxford). 2014;2014. doi:10.1093/database/bau069.

  76. Duan J, Zhang JG, Deng HW, Wang YP. Comparative studies of copy number variation detection methods for next-generation sequencing technologies. PLoS ONE. 2013;8(3):e59128. doi:10.1371/journal.pone.0059128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Legault MA, Girard S, Perreault P, Rouleau GA, MP Dube. Comparison of sequencing based CNV discovery methods using monozygotic twin quartets. PLoS ONE. 2015;10(3):e0122287. doi:10.1371/journal.pone.0122287.

    Article  PubMed  PubMed Central  Google Scholar 

  78. English AC, Salerno WJ, Hampton OA, Gonzaga-Jauregui C, Ambreth S, Ritter DI, et al. Assessing structural variation in a personal genome-towards a human reference diploid genome. BMC Genom. 2015;16:286. doi:10.1186/s12864-015-1479-3.

    Article  Google Scholar 

  79. Wong K, Keane TM, Stalker J, Adams DJ. Enhanced structural variant and breakpoint detection using SVMerge by integration of multiple detection methods and local assembly. Genome Biol. 2010;11(12):R128. doi:10.1186/gb-2010-11-12-r128.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mohiyuddin M, Mu JC, Li J, Bani Asadi N, Gerstein MB, Abyzov A, et al. MetaSV: an accurate and integrative structural-variant caller for next generation sequencing. Bioinformatics. 2015;31(16):2741–4. doi:10.1093/bioinformatics/btv204.

    Article  PubMed  Google Scholar 

  81. • Parikh H, Mohiyuddin M, Lam HY, Iyer H, Chen D, Pratt M et al. svclassify: a method to establish benchmark structural variant calls. BMC Genomics. 2016;17(1):64. doi:10.1186/s12864-016-2366-2. This paper provides a benchmark dataset for evaulating CNV detection algorthiums.

  82. Dong Z, Zhang J, Hu P, Chen H, Xu J, Tian Q, et al. Low-pass whole-genome sequencing in clinical cytogenetics: a validated approach. Genet Med. 2016;. doi:10.1038/gim.2015.199.

    Google Scholar 

  83. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med. 2011;13(7):680–5. doi:10.1097/GIM.0b013e3182217a3a.

    Article  PubMed  Google Scholar 

  84. Cooley LD, Lebo M, Li MM, Slovak ML, Wolff DJ. American College of Medical Genetics and Genomics technical standards and guidelines: microarray analysis for chromosome abnormalities in neoplastic disorders. Genet Med. 2013;15(6):484–94. doi:10.1038/gim.2013.49.

    Article  CAS  PubMed  Google Scholar 

  85. Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet. 2009;84(4):524–33. doi:10.1016/j.ajhg.2009.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 2014;42(Database issue):D986–92. doi:10.1093/nar/gkt958.

  87. Riggs ER, Church DM, Hanson K, Horner VL, Kaminsky EB, Kuhn RM, et al. Towards an evidence-based process for the clinical interpretation of copy number variation. Clin Genet. 2012;81(5):403–12. doi:10.1111/j.1399-0004.2011.01818.x.

    Article  CAS  PubMed  Google Scholar 

  88. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen–the clinical genome resource. N Engl J Med. 2015;372(23):2235–42. doi:10.1056/NEJMsr1406261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. CAGdb: Cytogenetics Array Group CNV database. www.CAGdb.org. 2016.

  90. Ordulu Z, Wong KE, Currall BB, Ivanov AR, Pereira S, Althari S, et al. Describing sequencing results of structural chromosome rearrangements with a suggested next-generation cytogenetic nomenclature. Am J Hum Genet. 2014;94(5):695–709. doi:10.1016/j.ajhg.2014.03.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao M, Zhao Z. CNVannotator: a comprehensive annotation server for copy number variation in the human genome. PLoS ONE. 2013;8(11):e80170. doi:10.1371/journal.pone.0080170.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Erikson GA, Deshpande N, Kesavan BG, Torkamani A. SG-ADVISER CNV: copy-number variant annotation and interpretation. Genet Med. 2015;17(9):714–8. doi:10.1038/gim.2014.180.

    Article  PubMed  Google Scholar 

  93. Gai X, Perin JC, Murphy K, O’Hara R, D’Arcy M, Wenocur A, et al. CNV workshop: an integrated platform for high-throughput copy number variation discovery and clinical diagnostics. BMC Bioinform. 2010;11:74. doi:10.1186/1471-2105-11-74.

    Article  Google Scholar 

  94. CNV analysis toolkit documentation. http://statgen.org/wp-content/uploads/Softwares/CNVAnalysisToolkit/docs/. 2016.

  95. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323(5910):133–8. doi:10.1126/science.1162986.

    Article  CAS  PubMed  Google Scholar 

  96. Shin SC, Ahn do H, Kim SJ, Lee H, Oh TJ, Lee JE et al. Advantages of single-molecule real-time sequencing in high-GC content genomes. PLoS One. 2013;8(7):e68824. doi:10.1371/journal.pone.0068824.

  97. Huddleston J, Ranade S, Malig M, Antonacci F, Chaisson M, Hon L, et al. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 2014;24(4):688–96. doi:10.1101/gr.168450.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. • Jain M, Fiddes IT, Miga KH, Olsen HE, Paten B, Akeson M. Improved data analysis for the MinION nanopore sequencer. Nat Methods. 2015;12(4):351–6. doi:10.1038/nmeth.3290. This paper describes using long MinION reads to resolve a CNV in a highly homologous region of the genome.

  99. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol. 2015;33(3):296–300. doi:10.1038/nbt.3103.

    Article  CAS  PubMed  Google Scholar 

  100. Carneiro MO, Russ C, Ross MG, Gabriel SB, Nusbaum C, DePristo MA. Pacific biosciences sequencing technology for genotyping and variation discovery in human data. BMC Genom. 2012;13:375. doi:10.1186/1471-2164-13-375.

    Article  CAS  Google Scholar 

  101. Au KF, Underwood JG, Lee L, Wong WH. Improving PacBio long read accuracy by short read alignment. PLoS ONE. 2012;7(10):e46679. doi:10.1371/journal.pone.0046679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Okoniewski MJ, Meienberg J, Patrignani A, Szabelska A, Matyas G, Schlapbach R. Precise breakpoint localization of large genomic deletions using PacBio and Illumina next-generation sequencers. Biotechniques. 2013;54(2):98–100. doi:10.2144/000113992.

    Article  CAS  Google Scholar 

  103. Korlach J. Understanding accuracy in SMRT sequencing. 2013.

  104. Li J, Lupat R, Amarasinghe KC, Thompson ER, Doyle MA, Ryland GL, et al. CONTRA: copy number analysis for targeted resequencing. Bioinformatics. 2012;28(10):1307–13. doi:10.1093/bioinformatics/bts146.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Klambauer G, Schwarzbauer K, Mayr A, Clevert DA, Mitterecker A, Bodenhofer U et al. cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res. 2012;40(9):e69. doi:10.1093/nar/gks003.

  106. Magi A, Tattini L, Cifola I, D’Aurizio R, Benelli M, Mangano E, et al. EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol. 2013;14(10):R120. doi:10.1186/gb-2013-14-10-r120.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sathirapongsasuti JF, Lee H, Horst BA, Brunner G, Cochran AJ, Binder S, et al. Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics. 2011;27(19):2648–54. doi:10.1093/bioinformatics/btr462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Love MI, Mysickova A, Sun R, Kalscheuer V, Vingron M, Haas SA. Modeling read counts for CNV detection in exome sequencing data. Stat Appl Genet Mol Biol. 2011;10(1). doi:10.2202/1544-6115.1732.

  109. Plagnol V, Curtis J, Epstein M, Mok KY, Stebbings E, Grigoriadou S, et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics. 2012;28(21):2747–54. doi:10.1093/bioinformatics/bts526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–76. doi:10.1101/gr.129684.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Birgit Funke and Fei Dong for their helpful discussions. MSL is funded in part by the National Human Genome Research Institute (NHGRI; U01 HG006500 and U01 HG008676-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Mason-Suares.

Ethics declarations

Disclosure

Heather Mason-Suares, Latrice Landry, and Matthew S. Lebo declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Cytogenetics.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mason-Suares, H., Landry, L. & S. Lebo, M. Detecting Copy Number Variation via Next Generation Technology. Curr Genet Med Rep 4, 74–85 (2016). https://doi.org/10.1007/s40142-016-0091-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-016-0091-4

Keywords

Navigation