Skip to main content

Advertisement

Log in

Comparison of Female Athlete Triad (Triad) and Relative Energy Deficiency in Sport (RED-S): a Review of Low Energy Availability, Multidisciplinary Awareness, Screening Tools and Education

  • Sports Medicine Rehabilitation (B Liem and BJ Krabak, Section Editors)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

A Correction to this article was published on 12 November 2020

This article has been updated

Abstract

Purpose of Review

This paper aims to review low energy availability (low EA), compare the Female Athlete Triad (Triad) and Relative Energy Deficiency in Sport (RED-S) screening tools and eating disorder/disordered eating questionnaires, and discuss multidisciplinary awareness, education, and treatment strategies. It provides an overview on the current state of the Triad and RED-S and assists clinicians with an overview of options for screening tools for their practice.

Recent Findings

Triad Consensus Panel Screening Questions, Preparticipation Physical Exam (PPE), and Periodic Health Exam (PHE) share overlapping questions from the Triad Consensus Panel Screening Questions. The Low Energy Availability in Females Questionnaire (LEAF-Q) is used in complement with eating disorder/disordered eating questionnaires (Table 2).

Summary

It is important to screen athletes for low EA during the PPE. If concerned for low EA, referral to healthcare professional and registered dietician is warranted. Education for athletes, coaches, and multidisciplinary providers is needed to increase awareness of low EA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 12 November 2020

    A Correction to this paper has been published: <ExternalRef><RefSource>https://doi.org/10.1007/s40141-020-00303-2</RefSource><RefTarget Address="10.1007/s40141-020-00303-2" TargetType="DOI"/></ExternalRef>

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• De Souza M, Nattiv A, Joy E, et al. 2014 Female Athlete Triad Coalition Consensus Statement on treatment and return to play of the female athlete triad. Curr Sports Med Rep. 2014;13(4):219–32. https://doi.org/10.1249/jsr.0000000000000077This article describes the 2014 Female Athlete Triad Coalition Consensus Statement.

    Article  PubMed  Google Scholar 

  2. Otis C, Drinkwater B, Johnson M, Loucks A, Wilmore J. ACSM Position Stand: the Female Athlete Triad. Medicine and Science in Sports & Exercise. 1997;29(5):i–ix. https://doi.org/10.1097/00005768-199705000-00037.

    Article  CAS  Google Scholar 

  3. Yeager K, Agostini R, Nattiv A, Drinkwater B. The female athlete triad: disordered eating, amenorrhea, osteoporosis. Med Sci Sports Exerc. 1993;25(7):775–7. https://doi.org/10.1249/00005768-199307000-00003.

    Article  CAS  PubMed  Google Scholar 

  4. • Nattiv A, Loucks AB, Manore MM, et al. American College of Sports Medicine. American College of Sports Medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 2007;39:1867–82. https://doi.org/10.1249/mss.0b013e318149f111This article describes the 2007 American College of Sports Medicine position stand on the Female Athlete Triad.

    Article  PubMed  Google Scholar 

  5. •• Tenforde A, Barrack M, Nattiv A, Fredericson M. Parallels with the Female Athlete Triad in male athletes. Sports Medicine. 2015;46(2):171–82. https://doi.org/10.1007/s40279-015-0411-yThis article compares features of the Female Athlete Triad in Male Athletes.

    Article  Google Scholar 

  6. Kraus E, Tenforde A, Nattiv A, et al. Bone stress injuries in male distance runners: higher modified Female Athlete Triad Cumulative Risk Assessment scores predict increased rates of injury. Br J Sports Med. 2018;53(4):237–42. https://doi.org/10.1136/bjsports-2018-099861.

    Article  PubMed  Google Scholar 

  7. Statuta S. The female athlete triad, relative energy deficiency in sport, and the male athlete triad. Curr Sports Med Rep. 2020;19(2):43–4. https://doi.org/10.1249/jsr.0000000000000679.

    Article  PubMed  Google Scholar 

  8. Ackerman K, Holtzman B, Cooper K, et al. Low energy availability surrogates correlate with health and performance consequences of relative energy deficiency in sport. Br J Sports Med. 2018;53(10):628–33. https://doi.org/10.1136/bjsports-2017-098958.

    Article  PubMed  Google Scholar 

  9. Javed A, Tebben P, Fischer P, Lteif A. Female athlete triad and its components: toward improved screening and management. Mayo Clin Proc. 2013;88(9):996–1009. https://doi.org/10.1016/j.mayocp.2013.07.001.

    Article  PubMed  Google Scholar 

  10. Gibbs JC, Williams NI, De Souza MJ. Prevalence of individual and combined components of the female athlete triad. Med Sci Sports Exerc. 2013;45:985–96. https://doi.org/10.1249/mss.0b013e31827e1bdc.

    Article  PubMed  Google Scholar 

  11. •• Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC Consensus Statement: beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491–7. https://doi.org/10.1136/bjsports-2014-093502This article introduces Relative Energy Deficiency in Sport (RED-S) by the International Olympic Committee in 2014.

    Article  PubMed  Google Scholar 

  12. Loucks A. Energy balance and body composition in sports and exercise. J Sports Sci. 2004;22(1):1–14. https://doi.org/10.1080/0264041031000140518.

    Article  PubMed  Google Scholar 

  13. Williams N, Koltun K, Strock N, De Souza M. Female athlete triad and relative energy deficiency in sport. Exerc Sport Sci Rev. 2019;47(4):197–205. https://doi.org/10.1249/jes.0000000000000200.

    Article  PubMed  Google Scholar 

  14. •• Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC relative energy deficiency in sport clinical assessment tool (RED-S CAT). Br J Sports Med. 2015;49(21):1354. https://doi.org/10.1136/bjsports-2015-094873This article introduces the Relative Energy Deficiency in Sport Clinical Assessment Tool (RED-S CAT).

    Article  PubMed  Google Scholar 

  15. •• Mountjoy M, Sundgot-Borgen J, Burke L, et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 update. Int J Sport Nutr Exerc Metab. 2018;28(4):316–31. https://doi.org/10.1123/ijsnem.2018-0136This article reviews RED-S and provides current updates from 2018 from the International Olympic Committee.

    Article  PubMed  Google Scholar 

  16. De Souza M, Williams N, Nattiv A, et al. Misunderstanding the female athlete triad: refuting the IOC Consensus Statement on Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(20):1461–5. https://doi.org/10.1136/bjsports-2014-093958.

    Article  PubMed  Google Scholar 

  17. Loucks A. Low energy availability in the marathon and other endurance sports. Sports Med. 2007;37(4):348–52. https://doi.org/10.2165/00007256-200737040-00019.

    Article  PubMed  Google Scholar 

  18. Heikura IA, Uusitalo ALT, Stellingwerff T, Bergland D, Mero AA, Burke LM. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int J Sport Nutr Exerc Metab. 2018;28:403–11. https://doi.org/10.1123/ijsnem.2017-0313.

    Article  CAS  PubMed  Google Scholar 

  19. Burke L, Lundy B, Fahrenholtz I, Melin A. Pitfalls of conducting and interpreting estimates of energy availability in free-living athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):350–63. https://doi.org/10.1123/ijsnem.2018-0142.

    Article  PubMed  Google Scholar 

  20. Murakami H, Kawakami R, Nakae S, Nakata Y, Ishikawa-Takata K, Tanaka S, et al. Accuracy of wearable devices for estimating total energy expenditure. JAMA Intern Med. 2016;176(5):702–3. https://doi.org/10.1001/jamainternmed.2016.0152.

    Article  PubMed  Google Scholar 

  21. Stubbs R, O’Reilly L, Whybrow S, et al. Measuring the difference between actual and reported food intakes in the context of energy balance under laboratory conditions. Br J Nutr. 2014;111(11):2032–43. https://doi.org/10.1017/s0007114514000154.

    Article  CAS  PubMed  Google Scholar 

  22. Sundgot-Borgen J, Garthe I. Elite athletes in aesthetic and Olympic weight-class sports and the challenge of body weight and body compositions. J Sports Sci. 2011;29(sup1):S101–14. https://doi.org/10.1080/02640414.2011.565783.

    Article  PubMed  Google Scholar 

  23. Kong P, Harris LM. The sporting body: body image and eating disorder symptomatology among female athletes from leanness focused and nonleanness focused sports. J Psychol. 2015;149:141–60. https://doi.org/10.1080/00223980.2013.846291.

    Article  PubMed  Google Scholar 

  24. Cain M. Opinion | I was the fastest girl in America, until i joined Nike. Nytimes.com. https://www.nytimes.com/2019/11/07/opinion/nike-running-mary-cain.html. Published 2020.

  25. Para athletics classification explained. International Paralympic Committee. https://www.paralympic.org/news/para-athletics-classification-explained. Published 2020.

  26. Logue D, Madigan S, Melin A, et al. Low energy availability in athletes 2020: an updated narrative review of prevalence, risk, within-day energy balance, knowledge, and impact on sports performance. Nutrients. 2020;12(3):835. https://doi.org/10.3390/nu12030835.

    Article  PubMed Central  Google Scholar 

  27. Lane H, Smith-Ryan K, Registar-Mihalik O. Prevalence of low energy availability in competitively trained male endurance athletes. Medicina (B Aires). 2019;55(10):665. https://doi.org/10.3390/medicina55100665.

    Article  Google Scholar 

  28. Beals K, Hill A. The prevalence of disordered eating, menstrual dysfunction, and low bone mineral density among US collegiate athletes. Int J Sport Nutr Exerc Metab. 2006;16(1):1–23. https://doi.org/10.1123/ijsnem.16.1.1.

    Article  PubMed  Google Scholar 

  29. Tenforde A, Carlson J, Chang A, et al. Association of the Female Athlete Triad Risk Assessment Stratification to the development of bone stress injuries in collegiate athletes. Am J Sports Med. 2016;45(2):302–10. https://doi.org/10.1177/0363546516676262.

    Article  PubMed  Google Scholar 

  30. Fagerberg P. Negative consequences of low energy availability in natural male bodybuilding: a review. Int J Sport Nutr Exerc Metab. 2018;28(4):385–402. https://doi.org/10.1123/ijsnem.2016-0332.

    Article  CAS  PubMed  Google Scholar 

  31. Burke L, Close G, Lundy B, Mooses M, Morton J, Tenforde A. Relative energy deficiency in sport in male athletes: a commentary on its presentation among selected groups of male athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):364–74. https://doi.org/10.1123/ijsnem.2018-0182.

    Article  PubMed  Google Scholar 

  32. Blauwet C, Brook E, Tenforde A, et al. Low energy availability, menstrual dysfunction, and low bone mineral density in individuals with a disability: implications for the para athlete population. Sports Med. 2017;47(9):1697–708. https://doi.org/10.1007/s40279-017-0696-0.

    Article  PubMed  Google Scholar 

  33. Shimizu Y, Mutsuzaki H, Tachibana K, Hotta K, Wadano Y. Investigation of the Female Athlete Triad in Japanese elite wheelchair basketball players. Medicina (B Aires). 2019;56(1):10. https://doi.org/10.3390/medicina56010010.

    Article  Google Scholar 

  34. Tenforde A, Brook E, Broad E, et al. Prevalence and anatomical distribution of bone stress injuries in the elite para athlete. Am J Phys Med Rehabil. 2019;98(11):1036–40. https://doi.org/10.1097/phm.0000000000001287.

    Article  PubMed  Google Scholar 

  35. Brook E, Tenforde A, Broad E, et al. Low energy availability, menstrual dysfunction, and impaired bone health: a survey of elite para athletes. Scand J Med Sci Sports. 2019;29(5):678–85. https://doi.org/10.1111/sms.13385.

    Article  PubMed  Google Scholar 

  36. Elliott-Sale K, Tenforde A, Parziale A, Holtzman B, Ackerman K. Endocrine effects of relative energy deficiency in sport. Int J Sport Nutr Exerc Metab. 2018;28(4):335–49. https://doi.org/10.1123/ijsnem.2018-0127.

    Article  CAS  PubMed  Google Scholar 

  37. Loucks A. Energy availability, not body fatness, regulates reproductive function in women. Exerc Sport Sci Rev. 2003;31(3):144–8. https://doi.org/10.1097/00003677-200307000-00008.

    Article  PubMed  Google Scholar 

  38. Koehler K, Hoerner N, Gibbs J, et al. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J Sports Sci. 2016;34(20):1921–9. https://doi.org/10.1080/02640414.2016.1142109.

    Article  PubMed  Google Scholar 

  39. Andreoli A, Monteleone M, Van Loan M, et al. Effects of different sports on bone density and muscle mass in highly trained athletes. Med Sci Sports Exerc. 2001;33:507–11. https://doi.org/10.1097/00005768-200104000-00001.

    Article  CAS  PubMed  Google Scholar 

  40. Ackerman KE, Nazem T, Chapko D, Russell M, Mendes N, Taylor AP, et al. Bone microarchitecture is impaired in adolescent amenorrheic athletes compared with eumenorrheic athletes and nonathletic controls. J Clin Endocrinol Metab. 2011;96:3123–33. https://doi.org/10.1210/jc.2011-1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ackerman KE, Cano Sokoloff N, DE Nardo MG, et al. Fractures in relation to menstrual status and bone parameters in young athletes. Med Sci Sports Exerc. 2015;47:1577–86. https://doi.org/10.1249/mss.0000000000000574.

    Article  PubMed  PubMed Central  Google Scholar 

  42. O’Donnell E, Goodman JM, Harvey PJ. Clinical review: cardiovascular consequences of ovarian disruption: a focus on functional hypothalamic amenorrhea in physically active women. J Clin Endocrinol Metab. 2011;96:3638–48. https://doi.org/10.1210/jc.2011-1223.

    Article  CAS  PubMed  Google Scholar 

  43. Sarin HV, Gudelj I, Honkanen J, Ihalainen JK, Vuorela A, Lee JH, et al. Molecular pathways mediating immunosuppression in response to prolonged intensive physical training, low-energy availability, and intensive weight loss. Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.00907.

  44. Petkus D, Murray-Kolb L, De Souza M. The unexplored crossroads of the female athlete triad and Iron deficiency: a narrative review. Sports Med. 2017;47(9):1721–37. https://doi.org/10.1007/s40279-017-0706-2.

    Article  PubMed  Google Scholar 

  45. Chang C, Putukian M, Aerni G, Diamond A, Hong G, Ingram Y, et al. Mental health issues and psychological factors in athletes: detection, management, effect on performance and prevention: American Medical Society for Sports Medicine Position Statement—Executive Summary. Br J Sports Med. 2019;54(4):216–20. https://doi.org/10.1136/bjsports-2019-101583.

    Article  PubMed  Google Scholar 

  46. Sundgot-Borgen J, Meyer NL, Lohman TG, Ackland TR, Maughan RJ, Stewart AD, et al. How to minimise the health risks to athletes who compete in weight-sensitive sports review and position statement on behalf of the Ad Hoc Research Working Group on Body Composition, Health and Performance, under the auspices of the IOC Medical Commission. Br J Sports Med. 2013;47(16):1012–22. https://doi.org/10.1136/bjsports-2013-092966.

    Article  PubMed  Google Scholar 

  47. Mitchell JJ, Robert-Mccomb JJ. (2014) Screening for disordered eating and eating disorders in female athletes. In: Robert-McComb JJ, Norman RL, Zumwalt M (eds) The Active Female. Springer, New York. https://doi.org/10.1007/978-1-4614-8884-2_13.

  48. Preparticipation Physical Evaluation (PPE). AAP.org. https://www.aap.org/en-us/advocacy-and-policy/aap-health-initiatives/Pages/PPE.aspx. Published 2020.

  49. •• Holtzman B, Tenforde A, Parziale A, Ackerman K. Characterization of risk quantification differences using Female Athlete Triad Cumulative Risk Assessment and Relative Energy Deficiency in Sport Clinical Assessment Tool. Int J Sport Nutr Exerc Metab. 2019;29(6):569–75. https://doi.org/10.1123/ijsnem.2019-0002This article compares the risk assessment tools the Female Athlete Triad Cumulative Risk Assessment Tool and the Relative Energy Deficiency in Sport Clinical Assessment Tool with low, medium, and high risk for return to play.

    Article  Google Scholar 

  50. •• Curry E, Logan C, Ackerman K, McInnis K, Matzkin E. Female Athlete Triad awareness among multispecialty physicians. Sports Med Open. 2015;1(1). https://doi.org/10.1186/s40798-015-0037-5This article assesses multispecialty physician awareness of the Female Athlete Triad and compares awareness among specialties.

  51. Rumball JS, Lebrun CM. Preparticipation physical examination: selected issues for the female athlete. Clin J Sport Med. 2004;14(3):153–60. https://doi.org/10.1097/00042752-200405000-00008.

    Article  PubMed  Google Scholar 

  52. • Melin A, Tornberg ÅB, Skouby S, et al. The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med. 2014;48(7):540–5. https://doi.org/10.1136/bjsports-2013-093240This article details the LEAF questionnaire (LEAF-Q), a screening tool to assess Female Athlete Triad risk factors.

    Article  PubMed  Google Scholar 

  53. Ljungqvist A, Jenoure P, Engebretsen L, Alonso JM, Bahr R, Clough A, et al. The International Olympic Committee (IOC) Consensus Statement on periodic health evaluation of elite athletes March 2009. Br J Sports Med. 2009;43(9):631–43. https://doi.org/10.1136/bjsm.2009.064394.

    Article  PubMed  Google Scholar 

  54. Miller S, Kukuljan S, Turner A, van der Pligt P, Ducher G. Energy deficiency, menstrual disturbances, and low bone mass: what do exercising Australian women know about the female athlete triad? Int J Sport Nutr Exerc Metab. 2012;22(2):131–8. https://doi.org/10.1123/ijsnem.22.2.131.

    Article  PubMed  Google Scholar 

  55. Feldmann J, Belsha J, Eissa M, Middleman A. Female adolescent athletes’ awareness of the connection between menstrual status and bone health. J Pediatr Adolesc Gynecol. 2011;24(5):311–4. https://doi.org/10.1016/j.jpag.2011.05.011.

    Article  PubMed  Google Scholar 

  56. Martin J, Coviak C, Gendler P, Kim K, Cooper K, Rodrigues-Fisher L. Female adolescentsʼ knowledge of bone health promotion behaviors and osteoporosis risk factors. Orthop Nurs. 2004;23(4):235–44. https://doi.org/10.1097/00006416-200407000-00008.

    Article  PubMed  Google Scholar 

  57. Keay N, Overseas A, Francis G. Awareness and indicators of low energy availability in male and female dancers. https://www.medrxiv.org/content/10.1101/2020.06.28.20141580v2. Published 2020.

  58. Brown K, Wengreen H, Beals K. Knowledge of the female athlete triad, and prevalence of triad risk factors among female high school athletes and their coaches. J Pediatr Adolesc Gynecol. 2014;27(5):278–82. https://doi.org/10.1016/j.jpag.2013.11.014.

    Article  PubMed  Google Scholar 

  59. Torres-McGehee TM, Pritchett KL, Zippel D, et al. Sports nutrition knowledge among collegiate athletes, coaches, athletic trainers, and strength and conditioning specialists. J Athl Train. 2012;47:205–11. https://doi.org/10.4085/1062-6050-47.2.205.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Downloadable Resources - CPSDA | SportsRd.org | Collegiate & Professional Sports Dietitians Association. CPSDA | SportsRd.org | Collegiate & Professional Sports Dietitians Association. https://www.sportsrd.org/downloadable-resources/. Published 2020.

  61. Martinsen M, Bahr R, Borresen R, Holme I, Pensgaard A, Sundgot-Borgen J. Preventing eating disorders among young elite athletes. Med Sci Sports Exerc. 2014;46(3):435–47. https://doi.org/10.1249/mss.0b013e3182a702fc.

    Article  PubMed  Google Scholar 

  62. Valliant MW, Emplaincourt HP, Wenzel RK, et al. Nutrition education by a registered dietitian improves dietary intake and nutrition knowledge of a NCAA female volleyball team. Nutrients. 2012;4:506–16. https://doi.org/10.3390/nu4060506.

    Article  PubMed  PubMed Central  Google Scholar 

  63. •• Ackerman K, Stellingwerff T, Elliott-Sale K, et al. #REDS (Relative Energy Deficiency in Sport): time for a revolution in sports culture and systems to improve athlete health and performance. Br J Sports Med. 2020;54(7):369–70. https://doi.org/10.1136/bjsports-2019-101926This recent 2020 editorial article calls for a revolution in sports culture through a paradigm shift, and identifies several needs for the prevention, diagnosis, and treatment of RED-S to improve athlete health.

    Article  PubMed  Google Scholar 

  64. Cobb KL, Bachrach LK, Sowers M, et al. The effect of oral contraceptives on bone mass and stress fractures in female runners. Med Sci Sports Exerc. 2007;39:1464–73. https://doi.org/10.1249/mss.0b013e318074e532.

    Article  CAS  PubMed  Google Scholar 

  65. Arends J, Cheung M, Barrack M, Nattiv A. Restoration of menses with nonpharmacologic therapy in college athletes with menstrual disturbances: a 5-year retrospective study. Int J Sport Nutr Exerc Metab. 2012;22(2):98–108. https://doi.org/10.1123/ijsnem.22.2.98.

    Article  CAS  PubMed  Google Scholar 

  66. Keay N. 2018 UPDATE: relative energy deficiency in sport (RED-S) | BJSM blog-social media’s leading SEM voice. British Journal of sports medicine blog. https://blogs.bmj.com/bjsm/2018/05/30/2018-update-relative-energy-deficiency-in-sport-red-s/. published 2018.

  67. Tenforde AS, Carlson JL, Sainani KL, et al. Sport and triad risk factors influence bone mineral density in collegiate athletes. MSSE. 2018;50(12):2536–43. https://doi.org/10.1249/mss.0000000000001711.

    Article  Google Scholar 

  68. Liu S. Effect of oral contraceptives and hormone replacement therapy on bone mineral density in premenopausal and perimenopausal women: a systematic review. Br J Sports Med. 2006;40(1):11–24. https://doi.org/10.1136/bjsm.2005.020065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thein-Nissenbaum J, Hammer E. Treatment strategies for the female athlete triad in the adolescent athlete: current perspectives. Open Access J Sports Med. 2017;8:85–95. https://doi.org/10.2147/oajsm.s100026.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandee Waite.

Ethics declarations

Conflict of Interest

Brandee Waite has served on the medical board for level 42 AI. Alexandra Warrick and Marcia Faustin do not have any potential conflicts of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article unfortunately contained a mistake in the Title. “Relative Energy Deficiency in Syndrome (RED-S)” should be presented as “Relative Energy Deficiency in Sport (RED-S)”.

This article belongs to the Topical Collection on Sports Medicine Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warrick, A., Faustin, M. & Waite, B. Comparison of Female Athlete Triad (Triad) and Relative Energy Deficiency in Sport (RED-S): a Review of Low Energy Availability, Multidisciplinary Awareness, Screening Tools and Education. Curr Phys Med Rehabil Rep 8, 373–384 (2020). https://doi.org/10.1007/s40141-020-00296-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-020-00296-y

Keywords

Navigation