Skip to main content
Log in

Post-Stroke Cognitive Impairments and Responsiveness to Motor Rehabilitation: A Review

  • Stroke Rehabilitation (P Raghavan, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review discusses the prevalence of cognitive deficits following stroke and their impact on responsiveness to therapeutic intervention within a motor learning context.

Recent Findings

Clinical and experimental studies have established that post-stroke cognitive and motor deficits may impede ambulation, augment fall risk, and influence the efficacy of interventions. Recent research suggests the presence of cognitive deficits may play a larger role in motor recovery than previously understood.

Summary

Considering that cognitive impairments affect motor relearning, post-stroke motor rehabilitation therapies may benefit from formal neuropsychological testing. For example, early work suggests that in neurotypical adults, cognitive function may be predictive of responsiveness to motor rehabilitation and cognitive training may improve mobility. This sets the stage for investigations probing these topics in people post-stroke. Moreover, the neural basis for and extent to which these cognitive impairments influence functional outcome remains largely unexplored and requires additional investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bastian AJ. Understanding sensorimotor adaptation and learning for rehabilitation. Curr Opin Neurol. 2008;21:628–33.

    PubMed  PubMed Central  Google Scholar 

  2. Song J-H. The role of attention in motor control and learning. Curr Opin Psychol. 2019;29:261–5.

    PubMed  Google Scholar 

  3. Buszard T, Farrow D, Verswijveren SJJM, Reid M, Williams J, Polman R, et al. Working memory capacity limits motor learning when implementing multiple instructions. Front Psychol. 2017;8:1350.

    PubMed  PubMed Central  Google Scholar 

  4. Bo J, Seidler RD. Visuospatial working memory capacity predicts the organization of acquired explicit motor sequences. J Neurophysiol. 2009;101:3116–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Langan J, Seidler RD. Age differences in spatial working memory contributions to visuomotor adaptation and transfer. Behav Brain Res. 2011;225:160–8.

    PubMed  PubMed Central  Google Scholar 

  6. Schaefer SY, Duff K. Within-session and one-week practice effects on a motor task in amnestic mild cognitive impairment. J Clin Exp Neuropsychol. 2017;39:473–84.

    PubMed  Google Scholar 

  7. Lingo VanGilder J, Hengge CR, Duff K, Schaefer SY. Visuospatial function predicts one-week motor skill retention in cognitively intact older adults. Neurosci Lett. 2018;664:139–43.

    PubMed  Google Scholar 

  8. Lingo VanGilder J, Walter CS, Hengge CR, Schaefer SY. Exploring the relationship between visuospatial function and age-related deficits in motor skill transfer. Aging Clin Exp Res. 2019;32:1451–8. https://doi.org/10.1007/s40520-019-01345-w.

    Article  PubMed  Google Scholar 

  9. Raw RK, Wilkie RM, Allen RJ, Warburton M, Leonetti M, Williams JHG, et al. Skill acquisition as a function of age, hand and task difficulty: interactions between cognition and action. PLoS One. 2019;14:e0211706.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schweighofer N, Lee J-Y, Goh H-T, Choi Y, Kim SS, Stewart JC, et al. Mechanisms of the contextual interference effect in individuals poststroke. J Neurophysiol. 2011;106:2632–41.

    PubMed  PubMed Central  Google Scholar 

  11. Corbetta M, Ramsey L, Callejas A, Baldassarre A, Hacker CD, Siegel JS, et al. Common behavioral clusters and subcortical anatomy in stroke. Neuron. 2015;85:927–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. • Teasell R, Salter K, Faltynek P, Cotoi A, Eskes G. Post-stroke cognitive disorders. In: Evidence-Based Rev. Stroke Rehabil., 18th ed. London, Ontario; 2018. p. 1–86. An evidenced-based review of stroke rehabilitation that emphasizes recent reports of post-stroke cognitive impairments and their (white matter) neural correlates.

    Google Scholar 

  13. Geschwind N. Disconnexion syndromes in animals and man. I Brain. 1965;88:237–94.

    CAS  PubMed  Google Scholar 

  14. Nys GMS, van Zandvoort MJE, de Kort PLM, Jansen BPW, de Haan EHF, Kappelle LJ. Cognitive disorders in acute stroke: prevalence and clinical determinants. Cerebrovasc Dis. 2007;23:408–16.

    CAS  PubMed  Google Scholar 

  15. Tatemichi TK, Desmond DW, Stern Y, Paik M, Sano M, Bagiella E. Cognitive impairment after stroke: frequency, patterns, and relationship to functional abilities. J Neurol Neurosurg Psychiatry. 1994;57:202–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Al-Qazzaz NK, Ali SH, Ahmad SA, Islam S, Mohamad K. Cognitive impairment and memory dysfunction after a stroke diagnosis: a post-stroke memory assessment. Neuropsychiatr Dis Treat. 2014;10:1677–91.

    PubMed  PubMed Central  Google Scholar 

  17. Jokinen H, Melkas S, Ylikoski R, Pohjasvaara T, Kaste M, Erkinjuntti T, et al. Post-stroke cognitive impairment is common even after successful clinical recovery. Eur J Neurol. 2015;22:1288–94.

    CAS  PubMed  Google Scholar 

  18. Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    CAS  Google Scholar 

  19. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.

    Google Scholar 

  20. Moafmashhadi P, Koski L. Limitations for interpreting failure on individual subtests of the Montreal Cognitive Assessment. J Geriatr Psychiatry Neurol. 2013;26:19–28.

    PubMed  Google Scholar 

  21. Malek-Ahmadi M, O’Connor K, Schofield S, Coon DW, Zamrini E. Trajectory and variability characterization of the Montreal Cognitive Assessment in older adults. Aging Clin Exp Res. 2018;30:993–8.

    PubMed  Google Scholar 

  22. Lohse KR, Schaefer SY, Raikes AC, Boyd LA, Lang CE. Asking new questions with old data: the centralized open-access rehabilitation database for stroke. Front Neurol. 2016;7:153.

    PubMed  PubMed Central  Google Scholar 

  23. Ortiz GA, L. Sacco R. National Institutes of Health stroke scale (NIHSS): Wiley Stats Ref Stat Ref Online; 2014. https://doi.org/10.1002/9781118445112.stat06823.

  24. Zhao X-J, Li Q-X, Liu T-J, Wang DL, An YC, Zhang J, et al. Predictive values of CSS and NIHSS in the prognosis of patients with acute cerebral infarction: a comparative analysis. Medicine (Baltimore). 2018;97:e12419.

    Google Scholar 

  25. Abzhandadze T, Reinholdsson M, Stibrant Sunnerhagen K. NIHSS is not enough for cognitive screening in acute stroke: a cross-sectional, retrospective study. Sci Rep. 2020;10:534.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gottesman RF, Kleinman JT, Davis C, Heidler-Gary J, Newhart M, Hillis AE. The NIHSS-plus: improving cognitive assessment with the NIHSS. Behav Neurol. 2010;22:11–5.

    PubMed  PubMed Central  Google Scholar 

  27. Weintraub S, Dikmen SS, Heaton RK, Tulsky DS, Zelazo PD, Bauer PJ, et al. Cognition assessment using the NIH toolbox. Neurology. 2013;80:S54–64.

    PubMed  PubMed Central  Google Scholar 

  28. • Tulsky DS, Holdnack JA, Cohen ML, Heaton RK, Carlozzi NE, AWK W, et al. Factor structure of the NIH Toolbox Cognition Battery in individuals with acquired brain injury. Rehabil Psychol. 2017;62:435–42 Results of this study suggest the NIH Toolbox Cognition Battery may be validated for use in populations with acquired brain injury (i.e., stroke).

    PubMed  PubMed Central  Google Scholar 

  29. Carlozzi NE, Goodnight S, Casaletto KB, Goldsmith A, Heaton RK, Wong AWK, et al. Validation of the NIH toolbox in individuals with neurologic disorders. Arch Clin Neuropsychol. 2017;32:555–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Babakhanyan I, Carlozzi NE, McKenna BS, Casaletto KB, Heinemann AW, Heaton RK. National Institutes of Health toolbox emotion battery: application of summary scores to adults with spinal cord injury, traumatic brain injury, and stroke. Arch Phys Med Rehabil. 2019;100:1863–71.

    PubMed  Google Scholar 

  31. Toglia J, Fitzgerald KA, O’Dell MW, Mastrogiovanni AR, Lin CD. The mini-mental state examination and Montreal Cognitive Assessment in persons with mild subacute stroke: relationship to functional outcome. Arch Phys Med Rehabil. 2011;92:792–8.

    Google Scholar 

  32. Bo J, Borza V, Seidler RD. Age-related declines in visuospatial working memory correlate with deficits in explicit motor sequence learning. J Neurophysiol. 2009;102:2744–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. •• McDonald MW, Black SE, Copland DA, et al. Cognition in stroke rehabilitation and recovery research: consensus-based core recommendations from the second stroke recovery and rehabilitation roundtable. Neurorehabil Neural Repair. 2019;33:943–50 This paper highlights key recommendations for guiding future research and clinical care regarding cognition and stroke rehabilitation and advocates for assessing specific cognitive domains rather than just global measures.

    PubMed  Google Scholar 

  34. Diagnostic and Statistical Manual of Mental Disorders: DSM-5. 5th ed. Arlington: American Psychiatric Association; 2013.

    Google Scholar 

  35. Gluhm S, Goldstein J, Loc K, Colt A, Van Liew C, Corey-Bloom J. Cognitive performance on the Mini-Mental State Examination and the Montreal Cognitive Assessment across the healthy adult lifespan. Cogn Behav Neurol. 2013;26:1–5.

    PubMed  PubMed Central  Google Scholar 

  36. Randolph C, Tierney MC, Mohr E, Chase TN. The repeatable battery for the assessment of neuropsychological status (RBANS): preliminary clinical validity. J Clin Exp Neuropsychol. 1998;20:310–9.

    CAS  PubMed  Google Scholar 

  37. Wechsler D. Manual for the Wechsler Adult Intelligence Scale. Oxford: Psychological Corp; 1955.

    Google Scholar 

  38. Osterrieth PA. Le test de copie d’une figure complexe. Arch Psychol. 1944;30:206–356.

    Google Scholar 

  39. Chen H, Pan X, Lau JKL, Bickerton W-L, Pradeep B, Taheri M, et al. Lesion-symptom mapping of a complex figure copy task: a large-scale PCA study of the BCoS trial. NeuroImage Clin. 2016;11:622–34.

    PubMed  PubMed Central  Google Scholar 

  40. Umarova RM, Sperber C, Kaller CP, Schmidt CSM, Urbach H, Kloppel S, et al. Cognitive reserve impacts on disability and cognitive deficits in acute stroke. J Neurol. 2019;266:2495–504.

    PubMed  Google Scholar 

  41. Stern Y. Cognitive reserve. Neuropsychologia. 2009;47:2015–28.

    PubMed  PubMed Central  Google Scholar 

  42. Mackintosh S, Goldie P, Hill K. Falls incidence and factors associated with falling in older, community-dwelling, chronic stroke survivors (>1 year after stroke) and matched controls. Aging Clin Exp Res. 2005;17:74–81.

    PubMed  Google Scholar 

  43. Schmid AA, Van Puymbroeck M, Altenburger PA, Miller KK, Combs SA, Page SJ. Balance is associated with quality of life in chronic stroke. Top Stroke Rehabil. 2013;20:340–6.

    PubMed  Google Scholar 

  44. Balasubramanian CK, Neptune RR, Kautz SA. Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke. Gait Posture. 2009;29:408–14.

    PubMed  Google Scholar 

  45. Lewek MD, Braun CH, Wutzke C, Giuliani C. The role of movement errors in modifying spatiotemporal gait asymmetry post stroke: a randomized controlled trial. Clin Rehabil. 2018;32:161–72.

    PubMed  Google Scholar 

  46. Stimpson KH, Heitkamp LN, Embry AE, Dean JC. Post-stroke deficits in the step-by-step control of paretic step width. Gait Posture. 2019;70:136–40.

    PubMed  PubMed Central  Google Scholar 

  47. • Van Criekinge T, Saeys W, Hallemans A, Velghe S, Viskens P-J, Vereeck L, et al. Trunk biomechanics during hemiplegic gait after stroke: a systematic review. Gait Posture. 2017;54:133–43 This systematic review highlights the impact of stroke-related changes in trunk biomechanics.

    PubMed  Google Scholar 

  48. de Haart M, Geurts AC, Huidekoper SC, Fasotti L, van Limbeek J. Recovery of standing balance in postacute stroke patients: a rehabilitation cohort study. Arch Phys Med Rehabil. 2004;85:886–95.

    PubMed  Google Scholar 

  49. Sackley CM. Falls, sway, and symmetry of weight-bearing after stroke. Int Disabil Stud. 1991;13:1–4.

    CAS  PubMed  Google Scholar 

  50. Rogers MW, Hedman LD, Pai YC. Kinetic analysis of dynamic transitions in stance support accompanying voluntary leg flexion movements in hemiparetic adults. Arch Phys Med Rehabil. 1993;74:19–25.

    CAS  PubMed  Google Scholar 

  51. Goldie PA, Matyas TA, Evans OM, Galea M, Bach TM. Maximum voluntary weight-bearing by the affected and unaffected legs in standing following stroke. Clin Biomech (Bristol, Avon). 1996;11:333–42.

    CAS  Google Scholar 

  52. • de Kam D, Roelofs JMB, Bruijnes AKBD, Geurts ACH, Weerdesteyn V. The next step in understanding impaired reactive balance control in people with stroke: the role of defective early automatic postural responses. Neurorehabil Neural Repair. 2017;31:708–16 This paper reports the deficits in and importance of reactive postural control for stroke survivors.

    PubMed  PubMed Central  Google Scholar 

  53. van Dijk PT, Meulenberg OG, van de Sande HJ, Habbema JD. Falls in dementia patients. Gerontologist. 1993;33:200–4.

    PubMed  Google Scholar 

  54. Burns E, Kakara R. Deaths from falls among persons aged ≥65 years — United States, 2007-2016. Morb Mortal Wkly Rep. 2018;67:509–14.

    Google Scholar 

  55. Saverino A, Waller D, Rantell K, Parry R, Moriarty A, Playford ED. The role of cognitive factors in predicting balance and fall risk in a neuro-rehabilitation setting. PLoS One. 2016;11:e0153469.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhatt T, Subramaniam S, Varghese R. Examining interference of different cognitive tasks on voluntary balance control in aging and stroke. Exp Brain Res. 2016;234:2575–84.

    CAS  PubMed  Google Scholar 

  57. Katzman R, Brown T, Fuld P, Peck A, Schechter R, Schimmel H. Validation of a short orientation-memory-concentration test of cognitive impairment. Am J Psychiatry. 1983;140:734–9.

    CAS  PubMed  Google Scholar 

  58. Bell A. 9 physical therapist tips to help you age well. In: Am. Phys. Ther. Assoc; 2015. https://www.moveforwardpt.com/Resources/Detail/9-physical-therapist-tips-to-help-you-agewell. .

    Google Scholar 

  59. Gatchel RJ, Schultz IZ, Ray CT, Hanna M, Choi JY. Functional rehabilitation in older adults: where are we now and where should we be going? In: Handb. Rehabil. Older Adults. Cham: Springer; 2018. p. 561–7.

    Google Scholar 

  60. • Arienti C, Lazzarini SG, Pollock A, Negrini S. Rehabilitation interventions for improving balance following stroke: an overview of systematic reviews. PLoS One. 2019;14:e0219781 The authors present a systematic review that outlines the impact of physical rehabilitation to improve balance following stroke.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schroder J, Truijen S, Van Criekinge T, Saeys W. Feasibility and effectiveness of repetitive gait training early after stroke: a systematic review and meta-analysis. J Rehabil Med. 2019;51:78–88.

    PubMed  Google Scholar 

  62. Schaefer SY, Sullivan JM, Peterson DS, Fauth EB. Cognitive function at admission predicts amount of gait speed change in geriatric physical rehabilitation. Ann Phys Rehabil Med. 2019;63:359–61. https://doi.org/10.1016/j.rehab.2019.08.004.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Friedman PJ, Baskett JJ, Richmond DE. Cognitive impairment and its relationship to gait rehabilitation in the elderly. N Z Med J. 1989;102:603–6.

    CAS  PubMed  Google Scholar 

  64. • Sagnier S, Renou P, Olindo S, Debruxelles S, Poli M, Rouanet F, et al. Gait change is associated with cognitive outcome after an acute ischemic stroke. Front Aging Neurosci. 2017;9:153 By following over 200 stroke survivors for one year after discharge, this study found that changes in global cognition were independently associated with a 10-m walk performance regardless of stroke severity.

    PubMed  PubMed Central  Google Scholar 

  65. Rabadi MH, Rabadi FM, Edelstein L, Peterson M. Cognitively impaired stroke patients do benefit from admission to an acute rehabilitation unit. Arch Phys Med Rehabil. 2008;89:441–8.

    PubMed  Google Scholar 

  66. Poynter L, Kwan J, Sayer AA, Vassallo M. Does cognitive impairment affect rehabilitation outcome? J Am Geriatr Soc. 2011;59:2108–11.

    PubMed  Google Scholar 

  67. •• Vassallo M, Poynter L, Kwan J, Sharma JC, Allen SC. A prospective observational study of outcomes from rehabilitation of elderly patients with moderate to severe cognitive impairment. Clin Rehabil. 2016;30:901–8 This paper demonstrates that patients with moderate or severe cognitive impairment still benefit from physical rehabilitation and that physical interventions may themselves have cognitive benefits. This paper can be used to refute the argument that if cognitive impairment interferes with motor rehabilitation, then should it even be administered? Furthermore, it challenges the finding noted in [22] that patients with low MMSE scores should be excluded from physical intervention studies.

    PubMed  PubMed Central  Google Scholar 

  68. Fasoli SE, Adans-Dester CP. A paradigm shift: rehabilitation robotics, cognitive skills training, and function after stroke. Front Neurol. 2019;10:1088.

    PubMed  PubMed Central  Google Scholar 

  69. Dobkin BHK, Nadeau SE, Behrman AL, Wu SS, Rose DK, Bowden M, et al. Prediction of responders for outcome measures of locomotor Experience Applied Post Stroke trial. J Rehabil Res Dev. 2014;51:39–50.

    PubMed  PubMed Central  Google Scholar 

  70. Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, et al. Protocol for the Locomotor Experience Applied Post-stroke (LEAPS) trial: a randomized controlled trial. BMC Neurol. 2007;7:39.

    PubMed  PubMed Central  Google Scholar 

  71. Mullick AA, Subramanian SK, Levin MF. Emerging evidence of the association between cognitive deficits and arm motor recovery after stroke: a meta-analysis. Restor Neurol Neurosci. 2015;33:389–403.

    PubMed  PubMed Central  Google Scholar 

  72. Cirstea CM, Ptito A, Levin MF. Feedback and cognition in arm motor skill reacquisition after stroke. Stroke. 2006;37:1237–42.

    CAS  PubMed  Google Scholar 

  73. Boe EW, Pedersen AD, Pedersen AR, Nielsen JF, Blicher JU. Cognitive status does not predict motor gain from post stroke constraint-induced movement therapy. NeuroRehabilitation. 2014;34:201–7.

    PubMed  Google Scholar 

  74. Wang P, Infurna FJ, Schaefer SY. Predicting motor skill learning in older adults using visuospatial performance. J Mot Learn Dev. 2019:1–14.

  75. Kim S, Oh Y, Schweighofer N. Between-trial forgetting due to interference and time in motor adaptation. PLoS One. 2015;10:e0142963.

    PubMed  PubMed Central  Google Scholar 

  76. Zhou RJ, Hondori HM, Khademi M, Cassidy JM, Wu KM, Yang DZ, et al. Predicting gains with visuospatial training after stroke using an EEG measure of frontoparietal circuit function. Front Neurol. 2018;9:597.

    PubMed  PubMed Central  Google Scholar 

  77. Schmidt R, Lee T, Winstein C, Wulf G, Zelaznik H. Motor control and learning: a behavioral emphasis, 6th edition (online access included). ProtoView. 2018;2018:1–552.

    Google Scholar 

  78. McDowd JM, Filion DL, Pohl PS, Richards LG, Stiers W. Attentional abilities and functional outcomes following stroke. J Gerontol Ser B. 2003;58:P45–53.

    Google Scholar 

  79. Silsupadol P, Shumway-Cook A, Lugade V, van Donkelaar P, Chou L-S, Mayr U, et al. Effects of single-task versus dual-task training on balance performance in older adults: a double-blind, randomized controlled trial. Arch Phys Med Rehabil. 2009;90:381–7.

    PubMed  PubMed Central  Google Scholar 

  80. Chung S, Wang X, Fieremans E, Rath JF, Amorapanth P, Foo F-YA, et al. Altered relationship between working memory and brain microstructure after mild traumatic brain injury. Am J Neuroradiol. 2019. https://doi.org/10.3174/ajnr.A6146.

  81. Doron N, Rand D. Is unilateral spatial neglect associated with motor recovery of the affected upper extremity poststroke? A systematic review. Neurorehabil Neural Repair. 2019;33:179–87.

    PubMed  Google Scholar 

  82. Kal E, Prosee R, Winters M, van der Kamp J. Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A systematic review. PLoS One. 2018;13:e0203591.

    PubMed  PubMed Central  Google Scholar 

  83. Marusic U, Verghese J, Mahoney JR. Cognitive-based interventions to improve mobility: a systematic review and meta-analysis. J Am Med Dir Assoc. 2018;19:484–491.e3.

    PubMed  PubMed Central  Google Scholar 

  84. Helm EE, Pohlig RT, Kumar DS, Reisman DS. Practice structure and locomotor learning after stroke. J Neurol Phys Ther. 2019;43:85–93.

    PubMed  PubMed Central  Google Scholar 

  85. • Liu YC, Yang YR, Tsai YA, Wang RY. Cognitive and motor dual task gait training improve dual task gait performance after stroke - a randomized controlled pilot trial. Sci Rep. 2017;7:4070 This paper shows that cognitive-motor and motor-motor dual-task training can have differential effects on dual-task capability in chronic stroke survivors when compared with conventional physical therapy.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sydney Y. Schaefer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stroke Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lingo VanGilder, J., Hooyman, A., Peterson, D.S. et al. Post-Stroke Cognitive Impairments and Responsiveness to Motor Rehabilitation: A Review. Curr Phys Med Rehabil Rep 8, 461–468 (2020). https://doi.org/10.1007/s40141-020-00283-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-020-00283-3

Keywords

Navigation