Skip to main content
Log in

Selecting, Administering, and Interpreting Outcome Measures Among Adults with Lower-Limb Loss: an Update for Clinicians

  • Amputation Rehabilitation (J Heckman, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize outcome measurement research among adults with lower-limb loss (LLL) for clinicians.

Recent Findings

Houghton Scale, Prosthetic Evaluation Questionnaire-Mobility Subscale (PEQ-m), Prosthetic Limb Users Survey of Mobility (PLUS-M™), Activities-Specific Balance Confidence Scale (ABC), Amputee Mobility Predictor (AMP), Comprehensive High-Level Activity Mobility Predictor, Four Square Step Test (FSST), Narrowing Beam Walking Test (NBWT), L Test, 10 Meter Walk Test (10MWT), and 6 Minute Walk Test (6MWT) are appropriate for evaluating individual patient changes post-LLL. Post-LLL, Socket Comfort Score, Patient-Specific Functional Scale, Patient-Reported Outcomes Measurement Information System 29-Item Profile, Timed Up and Go, and 2 Minute Walk Test may be more appropriate for evaluating groups. Minimal detectable change is available for 15/20 reviewed measures. Many measures differ between mobility levels.

Summary

Quick, reliable measures for evaluating patient functional change include ABC, PEQ-m, PLUS-M™, FSST, and L Test; when resources allow, NBWT, 10MWT, 6MWT, and AMP may be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Hafner BJ, Spaulding SE, Salem R, Morgan SJ, Gaunaurd I, Gailey R. Prosthetists’ perceptions and use of outcome measures in clinical practice: long-term effects of focused continuing education. Prosthetics Orthot Int. 2017;41(3):266–73. https://doi.org/10.1177/0309364616664152This study describes the long-term positive impact of continuing education on prosthetists’ confidence in administering outcome measures in clinical practice.

    Article  Google Scholar 

  2. Roepke AM, Williams RM, Turner AP, Henderson AW, Norvell DC, Henson H, et al. A longitudinal study of social participation after dysvascular lower extremity amputation. Am J Phys Med Rehabil. 2017;96(10):741–7. https://doi.org/10.1097/PHM.0000000000000745.

  3. Darter BJ, Hawley CE, Armstrong AJ, Avellone L, Wehman P. Factors influencing functional outcomes and return-to-work after amputation: a review of the literature. J Occup Rehabil. 2018;28(4):656–65. https://doi.org/10.1007/s10926-018-9757-y.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu SH, Eaton CB, Driban JB, McAlindon TE, Lapane KL. Comparison of self-report and objective measures of physical activity in US adults with osteoarthritis. Rheumatol Int. 2016;36(10):1355–64. https://doi.org/10.1007/s00296-016-3537-9.

    Article  PubMed  Google Scholar 

  5. Sievi NA, Brack T, Brutsche MH, Frey M, Irani S, Leuppi JD, et al. Accelerometer- versus questionnaire-based assessment of physical activity and their changes over time in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:1113–8. https://doi.org/10.2147/COPD.S130195.

  6. Schaller A, Rudolf K, Dejonghe L, Grieben C, Froboese I. Influencing factors on the overestimation of self-reported physical activity: a cross-sectional analysis of low back pain patients and healthy controls. Biomed Res Int. 2016;2016:1497213–1. https://doi.org/10.1155/2016/1497213.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Visser TAW, Bender AD, Bowden VK, Black SC, Greenwell-Barnden J, Loft S, et al. Individual differences in higher-level cognitive abilities do not predict overconfidence in complex task performance. Conscious Cogn. 2019;74:102777. https://doi.org/10.1016/j.concog.2019.102777.

  8. Bourque MO, Schneider KL, Calamari JE, Reddin C, Stachowiak A, Major MJ, et al. Combining physical therapy and cognitive behavioral therapy techniques to improve balance confidence and community participation in people with unilateral transtibial amputation who use lower limb prostheses: a study protocol for a randomized sham-control clinical trial. Trials. 2019;20(1):812. https://doi.org/10.1186/s13063-019-3929-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Haley SM, Fragala-Pinkham MA. Interpreting change scores of tests and measures used in physical therapy. Phys Ther. 2006;86(5):735–43.

    Article  Google Scholar 

  10. Donoghue D, Physiotherapy Research and Older People (RPOP) group, Stokes EK. How much change is true change? The minimum detectable change of the Berg Balance Scale in elderly people. J Rehabil Med 2009;41(5):343–346. https://doi.org/10.2340/16501977-0337.

  11. Frost MH, Reeve BB, Liepa AM, Stauffer JW, Hays RD, the Mayo/FDA Patient-Reported Outcomes Consensus Meeting Group. What is sufficient evidence for the reliability and validity of patient-reported outcome measures? Value Health. 2007;10(Suppl 2):S94–S105. https://doi.org/10.1111/j.1524-4733.2007.00272.x.

  12. Fitzpatrick R, Davey C, Buxton MJ, Jones DR. Evaluating patient-based outcome measures for use in clinical trials. Health Technol Assess. 1998;2(14):i–iv 1–74.

    Article  CAS  Google Scholar 

  13. Nunnally JBJ. Psychometric theory. 3rd ed. New York: McGraw-Hill; 1994.

    Google Scholar 

  14. • Franchignoni F, Ferriero G, Giordano A, Monticone M, Grioni G, Burger H. The minimal clinically-important difference of the Prosthesis Evaluation Questionnaire - Mobility Scale in subjects undergoing lower limb prosthetic rehabilitation training. Eur J Phys Rehabil Med. 2020;56(1):82–7. https://doi.org/10.23736/S1973-9087.19.05799-XThis prospective single-group observational study of 87 adults with LLL establishes the MDC95and MCID for the PEQ-m.

    Article  PubMed  Google Scholar 

  15. Hanspal RS, Fisher K, Nieveen R. Prosthetic socket fit comfort score. Disabil Rehabil. 2003;25(22):1278–80. https://doi.org/10.1080/09638280310001603983.

    Article  PubMed  CAS  Google Scholar 

  16. Williamson A, Hoggart B. Pain: a review of three commonly used pain rating scales. J Clin Nurs. 2005;14(7):798–804. https://doi.org/10.1111/j.1365-2702.2005.01121.x.

    Article  PubMed  Google Scholar 

  17. • Hafner BJ, Morgan SJ, Askew RL, Salem R. Psychometric evaluation of self-report outcome measures for prosthetic applications. J Rehabil Res Dev. 2016;53(6):797–812. https://doi.org/10.1682/JRRD.2015.12.0228This prospective study of 201 adults with LLL established test-retest reliability, mode of administration equivalence, SEM, MDC90, and MDC95for multiple standardized self-reported outcome measures.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Houghton AD, Taylor PR, Thurlow S, Rootes E, McColl I. Success rates for rehabilitation of vascular amputees: implications for preoperative assessment and amputation level. Brit J Surg. 1992;79(8):753–5. https://doi.org/10.1002/bjs.1800790811.

    Article  PubMed  CAS  Google Scholar 

  19. Devlin M, Pauley T, Head K, Garfinkel S. Houghton scale of prosthetic use in people with lower-extremity amputations: reliability, validity, and responsiveness to change. Arch Phys Med Rehabil. 2004;85(8):1339–44. https://doi.org/10.1016/j.apmr.2003.09.025.

    Article  PubMed  Google Scholar 

  20. • Wong CK, Gibbs W, Chen ES. Use of the Houghton Scale to classify community and household walking ability in people with lower-limb amputation: validity. Arch Phys Med Rehabil. 2016;97(7):1130–6. https://doi.org/10.1016/j.apmr.2016.01.022This cross-sectional cohort study of 180 adults with LLL established validity of the Houghton scale in differentiating community ambulatory status of adults with LLL. The Houghton scale was correlated with PEQ-m, ABC, balance ability, TUG, and 2MWT.

  21. Franchignoni F, Giordano A, Ferriero G, Orlandini D, Amoresano A, Perucca L. Measuring mobility in people with lower limb amputation: Rasch analysis of the mobility section of the prosthesis evaluation questionnaire. J Rehabil Med. 2007;39(2):138–44. https://doi.org/10.2340/16501977-0033.

    Article  PubMed  Google Scholar 

  22. Prosthetic Limb Users Survey of Mobility (PLUS-M™) Version 1.2 Short Forms Users Guide. 2014. http://www.plus-m.org/. Accessed Apr 13, 2020.

  23. Fuller K, Omana Moreno HA, Frengopoulos C, Payne MW, Viana R, Hunter SW. Reliability, validity, and agreement of the short-form Activities-specific Balance Confidence Scale in people with lower extremity amputations. Prosthetics Orthot Int. 2019;43(6):609–17. https://doi.org/10.1177/0309364619875623.

    Article  Google Scholar 

  24. Sions JM, Manal TJ, Horne JR, Sarlo FB, Pohlig RT. Balance-confidence is associated with community participation, perceived physical mobility, and performance-based function among individuals with a unilateral amputation. Physiother Theor Pr. 2018;36:1–8. https://doi.org/10.1080/09593985.2018.1490939.

    Article  Google Scholar 

  25. Peretz C, Herman T, Hausdorff JM, Giladi N. Assessing fear of falling: can a short version of the Activities-specific Balance Confidence scale be useful? Mov Disord. 2006;21(12):2101–5. https://doi.org/10.1002/mds.21113.

    Article  PubMed  Google Scholar 

  26. Sakakibara BM, Miller WC, Backman CL. Rasch analyses of the Activities-specific Balance Confidence Scale with individuals 50 years and older with lower-limb amputations. Arch Phys Med Rehabil. 2011;92(8):1257–63. https://doi.org/10.1016/j.apmr.2011.03.013.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hafner BJ, Gaunaurd IA, Morgan SJ, Amtmann D, Salem R, Gailey RS. Construct validity of the Prosthetic Limb Users Survey of Mobility (PLUS-M) in adults with lower limb amputation. Arch Phys Med Rehabil. 2017;98(2):277–85. https://doi.org/10.1016/j.apmr.2016.07.026.

    Article  PubMed  Google Scholar 

  28. • Resnik L, Borgia M. Reliability of outcome measures for people with lower-limb amputations: distinguishing true change from statistical error. Phys Ther. 2011;91(4):555–65 This repeated measures study of 44 adults with unilateral LLL calculated the test-retest reliability, SEM, and MDC90of multiple outcome measures including PSFS, AMP, TUG, 6MWT, and 2MWT.

  29. Cella D, Choi SW, Condon DM, Schalet B, Hays RD, Rothrock NE, et al. PROMIS((R)) adult health profiles: efficient short-form measures of seven health domains. Value Health. 2019;22(5):537–44. https://doi.org/10.1016/j.jval.2019.02.004.

  30. Condon DM, Chapman R, Shaunfield S, Kallen MA, Beaumont JL, Eek D, et al. Does recall period matter? Comparing PROMIS((R)) physical function with no recall, 24-hr recall, and 7-day recall. Qual Life Res. 2020;29(3):745–53. https://doi.org/10.1007/s11136-019-02344-0.

  31. • Gailey RS, Roach KE, Applegate EB, Cho B, Cunniffe B, Licht S, et al. The amputee mobility predictor: an instrument to assess determinants of the lower-limb amputee's ability to ambulate. Arch Phys Med Rehabil. 2002;83(5):613–27 This study of 191 adults with LLL describes the development of the AMP, its reliablity, and validity.

    Article  Google Scholar 

  32. Raya MA, Gailey RS, Gaunaurd IA, Ganyard H, Knapp-Wood J, McDonough K, et al. Amputee mobility predictor-bilateral: a performance-based measure of mobility for people with bilateral lower-limb loss. J Rehabil Res Dev. 2013;50(7).

  33. Gailey RS, Gaunaurd IA, Raya MA, Roach KE, Linberg AA, Campbell SM, et al. Development and reliability testing of the Comprehensive High-Level Activity Mobility Predictor (CHAMP) in male servicemembers with traumatic lower-limb loss. J Rehabil Res Dev. 2013;50(7):905–18. https://doi.org/10.1682/JRRD.2012.05.0099.

  34. Anton A, Legault Z, Dudek N. Validity of the comprehensive high-level activity mobility predictor in a heterogeneous population with lower extremity amputations. Prosthetics Orthot Int. 2020:0309364619887559.

  35. Gailey RS, Scoville C, Gaunaurd IA, Raya MA, Linberg AA, Stoneman PD, et al. Construct validity of Comprehensive High-Level Activity Mobility Predictor (CHAMP) for male servicemembers with traumatic lower-limb loss. J Rehabil Res Dev. 2013;50(7):919–30. https://doi.org/10.1682/jrrd.2012.05.0100.

    Article  PubMed  Google Scholar 

  36. Beisheim EH, Horne JR, Pohlig RT, Sions JM. Differences in measures of strength and dynamic balance among individuals with lower-limb loss classified as functional level K3 versus K4. Am J Phys Med Rehabil. 2019;98(9):745–50.

    Article  Google Scholar 

  37. Wilken JM, Roy CW, Shaffer SW, Patzkowski JC, Blanck RV, Owens JG, et al. Physical performance limitations after severe lower extremity trauma in military service members. J Orthop Trauma. 2018;32(4):183–9.

  38. Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM. Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test. Phys Ther. 2005;85(10):1034–45.

    Article  Google Scholar 

  39. Bohannon RW. Reference values for the five-repetition sit-to-stand test: a descriptive meta-analysis of data from elders. Percept Mot Skills. 2006;103(1):215–22. https://doi.org/10.2466/pms.103.1.215-222.

    Article  PubMed  Google Scholar 

  40. •• Sawers A, Kim J, Balkman G, Hafner B. Interrater and test-retest reliability of performance-based clinical tests administered to established users of lower limb prostheses. Phys Ther. 2020; This study of 60 adults with LLL identified the inter-rater and test-retest reliability, SEM, and MDC90of the FSST, NBWT, TUG, and 10MWT.

  41. Sawers A, Hafner B. Validation of the narrowing beam walking test in lower limb prosthesis users. Arch Phys Med Rehabil. 2018;99(8):1491–8. e1.

    Article  Google Scholar 

  42. Dite W, Temple VA. A clinical test of stepping and change of direction to identify multiple falling older adults. Arch Phys Med Rehabil. 2002;83(11):1566–71.

    Article  Google Scholar 

  43. Cleary K, Skornyakov E. Predicting falls in older adults using the four square step test. Physiother Theor Pr. 2017;33(10):766–71. https://doi.org/10.1080/09593985.2017.1354951.

    Article  Google Scholar 

  44. Gremeaux V, Damak S, Troisgros O, Feki A, Laroche D, Perennou D, et al. Selecting a test for the clinical assessment of balance and walking capacity at the definitive fitting state after unilateral amputation: a comparative study. Prosthetics Orthot Int. 2012;36(4):415–22.

  45. Mueller MJ, Salsich GB, Strube MJ. Functional limitations in patients with diabetes and transmetatarsal amputations. Phys Ther. 1997;77(9):937–43.

    Article  CAS  Google Scholar 

  46. Duncan PW, Weiner DK, Chandler J, Studenski S. Functional reach: a new clinical measure of balance. J Gerontol. 1990;45(6):M192–M7.

    Article  CAS  Google Scholar 

  47. Sawers A, Hafner BJ. Narrowing beam-walking is a clinically feasible approach for assessing balance ability in lower-limb prosthesis users. J Rehabil Med. 2018;50(5):457–64.

    Article  Google Scholar 

  48. Major MJ, Fatone S, Roth EJ. Validity and reliability of the Berg Balance Scale for community-dwelling persons with lower-limb amputation. Arch Phys Med Rehabil. 2013;94(11):2194–202.

    Article  Google Scholar 

  49. Wong CK. Interrater reliability of the Berg Balance Scale when used by clinicians of various experience levels to assess people with lower limb amputations. Phys Ther. 2014;94(3):371–8.

    Article  Google Scholar 

  50. Wong CK, Chen CC, Welsh J. Preliminary assessment of balance with the Berg Balance Scale in adults who have a leg amputation and dwell in the community: Rasch rating scale analysis. Phys Ther. 2013;93(11):1520–9.

  51. Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health. 1992;83:S7–S11.

    PubMed  Google Scholar 

  52. Lima C, Ricci N, Nogueira E, Perracini M. The Berg Balance Scale as a clinical screening tool to predict fall risk in older adults: a systematic review. Physiotherapy. 2018;104(4):383–94.

    Article  CAS  Google Scholar 

  53. Wrisley DM, Kumar NA. Functional gait assessment: concurrent, discriminative, and predictive validity in community-dwelling older adults. Phys Ther. 2010;90(5):761–73.

    Article  Google Scholar 

  54. Muir SW, Berg K, Chesworth B, Klar N, Speechley M. Balance impairment as a risk factor for falls in community-dwelling older adults who are high functioning: a prospective study. Phys Ther. 2010;90(3):338–47.

    Article  Google Scholar 

  55. Deathe AB, Miller WC. The L test of functional mobility: measurement properties of a modified version of the timed “up & go” test designed for people with lower-limb amputations. Phys Ther. 2005;85(7):626–35.

    Article  Google Scholar 

  56. Schoppen T, Boonstra A, Groothoff JW, de Vries J, Göeken LN, Eisma WH. The timed “up and go” test: reliability and validity in persons with unilateral lower limb amputation. Arch Phys Med Rehabil. 1999;80(7):825–8.

    Article  CAS  Google Scholar 

  57. Bohannon RW. Reference values for the timed up and go test: a descriptive meta-analysis. J Geriatr Phys Ther. 2006;29(2):64–8.

    Article  Google Scholar 

  58. •• Hunter SW, Frengopoulos C, Holmes J, Viana R, Payne MW. Determining reliability of a dual-task functional mobility protocol for individuals with lower extremity amputation. Arch Phys Med Rehabil. 2018;99(4):707–12 This cross-sectional study of 60 adults with LLL determined the reliability of a dual-task functional mobility measure, i.e., L test with serial subtraction.

    Article  Google Scholar 

  59. Rushton PW, Miller WC, Deathe AB. Minimal clinically important difference of the L Test for individuals with lower limb amputation: a pilot study. Prosthetics Orthot Int. 2015;39(6):470–6.

    Article  Google Scholar 

  60. Desrochers J, Frengopoulos C, Payne MW, Viana R, Hunter SW. Relationship between body image and physical functioning following rehabilitation for lower-limb amputation. Int J Rehabil Res. 2019;42(1):85–8.

    Article  Google Scholar 

  61. Medley A, Thompson M. Contribution of age and balance confidence to functional mobility test performance: diagnostic accuracy of L test and normal-paced timed up and go. J Geriatr Phys Ther. 2015;38(1):8–16.

    Article  Google Scholar 

  62. Roffman CE, Buchanan J, Allison GT. Locomotor performance during rehabilitation of people with lower limb amputation and prosthetic nonuse 12 months after discharge. Phys Ther. 2016;96(7):985–94.

    Article  Google Scholar 

  63. • Sions JM, Beisheim EH, Manal TJ, Smith SC, Horne JR, Sarlo FB. Differences in physical performance measures among patients with unilateral lower-limb amputations classified as functional level K3 versus K4. Arch Phys Med Rehabil. 2018;99(7):1333–41 This cross-sectional study of 55 adults with unilateral LLL identified the TUG, 10MWT, AMP, and 6MWT as appropriate measures for differentiating between higher-functioning individuals.

    Article  Google Scholar 

  64. Bohannon RW. Comfortable and maximum walking speed of adults aged 20—79 years: reference values and determinants. Age Ageing. 1997;26(1):15–9.

    Article  CAS  Google Scholar 

  65. Hess RJ, Brach JS, Piva SR, VanSwearingen JM. Walking skill can be assessed in older adults: validity of the Figure-of-8 Walk Test. Phys Ther. 2010;90(1):89–99.

    Article  Google Scholar 

  66. Schack J, Mirtaheri P, Steen H, Gjøvaag T. Assessing mobility for persons with lower limb amputation: the Figure-of-Eight Walk Test with the inclusion of two novel conditions. Disabil Rehabil. 2019:1–10.

  67. Lin S-J, Bose NH. Six-minute walk test in persons with transtibial amputation. Arch Phys Med Rehabil. 2008;89(12):2354–9.

    Article  Google Scholar 

  68. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respiratory Soc. 2014;44:1428–46.

  69. Orendurff MS, Segal AD, Berge JS, Flick KC, Spanier D, Klute GK. The kinematics and kinetics of turning: limb asymmetries associated with walking a circular path. Gait Posture. 2006;23(1):106–11.

    Article  Google Scholar 

  70. Rikli RE, Jones CJ. Functional fitness normative scores for community-residing older adults, ages 60-94. J Aging Phys Act. 1999;7:162–81.

    Article  Google Scholar 

  71. Bohannon RW, Wang Y-C, Gershon RC. Two-minute walk test performance by adults 18 to 85 years: normative values, reliability, and responsiveness. Arch Phys Med Rehabil. 2015;96(3):472–7.

    Article  Google Scholar 

  72. Carroll MK, Carroll K, Rheinstein J, Highsmith MJ. Functional differences of bilateral transfemoral amputees using full-length and stubby-length prostheses. Technol Innov. 2018;20(1–2):75–83.

    Article  Google Scholar 

  73. Yazicioglu K, Taskaynatan MA, Guzelkucuk U, Tugcu I. Effect of playing football (soccer) on balance, strength, and quality of life in unilateral below-knee amputees. Am J Phys Med Rehabil. 2007;86(10):800–5. https://doi.org/10.1097/PHM.0b013e318151fc74.

    Article  PubMed  Google Scholar 

  74. Guchan Z, Bayramlar K, Ergun N. Determination of the effects of playing soccer on physical fitness in individuals with transtibial amputation. J Sports Med Phys Fitness. 2017;57(6):879–86. https://doi.org/10.23736/s0022-4707.16.06336-2.

    Article  PubMed  Google Scholar 

  75. Azuma Y, Chin T, Miura Y. The relationship between balance ability and walking ability using the Berg Balance Scale in people with transfemoral amputation. Prosthetics Orthot Int. 2019;43(4):396–401. https://doi.org/10.1177/0309364619846364.

    Article  Google Scholar 

  76. Batten HR, McPhail SM, Mandrusiak AM, Varghese PN, Kuys SS. Gait speed as an indicator of prosthetic walking potential following lower limb amputation. Prosthetics Orthot Int. 2019;43(2):196–203. https://doi.org/10.1177/0309364618792723.

    Article  Google Scholar 

  77. Reid L, Thomson P, Besemann M, Dudek N. Going places: does the two-minute walk test predict the six-minute walk test in lower extremity amputees? J Rehabil Med. 2015;47(3):256–61. https://doi.org/10.2340/16501977-1916.

    Article  PubMed  Google Scholar 

  78. Brooks D, Parsons J, Hunter JP, Devlin M, Walker J. The 2-minute walk test as a measure of functional improvement in persons with lower limb amputation. Arch Phys Med Rehabil. 2001;82(10):1478–83. https://doi.org/10.1053/apmr.2001.25153.

    Article  PubMed  CAS  Google Scholar 

  79. Parker K, Kirby RL, Adderson J, Thompson K. Ambulation of people with lower-limb amputations: relationship between capacity and performance measures. Arch Phys Med Rehabil. 2010;91(4):543–9. https://doi.org/10.1016/j.apmr.2009.12.009.

    Article  PubMed  Google Scholar 

  80. de Laat FA, Dijkstra PU, Rommers GM, Geertzen JH, Roorda LD. Perceived independence and limitations in rising and sitting down after rehabilitation for a lower-limb amputation. J Rehabil Med. 2014;46(8):824–7. https://doi.org/10.2340/16501977-1834.

    Article  PubMed  Google Scholar 

  81. Agrawal V, Gailey R, Gaunaurd I, Gailey R 3rd, O'Toole C. Weight distribution symmetry during the sit-to-stand movement of unilateral transtibial amputees. Ergonomics. 2011;54(7):656–64. https://doi.org/10.1080/00140139.2011.586060.

    Article  PubMed  Google Scholar 

  82. Mong Y, Teo TW, Ng SS. 5-repetition sit-to-stand test in subjects with chronic stroke: reliability and validity. Arch Phys Med Rehabil. 2010;91(3):407–13. https://doi.org/10.1016/j.apmr.2009.10.030.

    Article  PubMed  Google Scholar 

  83. Jones SE, Kon SS, Canavan JL, Patel MS, Clark AL, Nolan CM, et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax. 2013;68(11):1015–20. https://doi.org/10.1136/thoraxjnl-2013-203576.

    Article  PubMed  Google Scholar 

  84. Muir-Hunter SW, Graham L, Montero OM. Reliability of the Berg Balance Scale as a clinical measure of balance in community-dwelling older adults with mild to moderate Alzheimer disease: a pilot study. Physiother Can. 2015;67(3):255–62. https://doi.org/10.3138/ptc.2014-32.

  85. Conradsson M, Lundin-Olsson L, Lindelof N, Littbrand H, Malmqvist L, Gustafson Y, et al. Berg Balance Scale: intrarater test-retest reliability among older people dependent in activities of daily living and living in residential care facilities. Phys Ther. 2007;87(9):1155–63. https://doi.org/10.2522/ptj.20060343.

  86. Wong CK, Chen CC, Blackwell WM, Rahal RT, Benoy SA. Balance ability measured with the Berg Balance Scale: a determinant of fall history in community-dwelling adults with leg amputation. J Rehabil Med. 2015;47(1):80–6. https://doi.org/10.2340/16501977-1882.

  87. Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23(2):314–22. https://doi.org/10.1123/japa.2013-0236.

    Article  PubMed  Google Scholar 

  88. Steffen T, Seney M. Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-item Short-Form Health Survey Unified Parkinson Disease Rating Scale in people with parkinsonism. Phys Ther. 2008;88(6):733–46. https://doi.org/10.2522/ptj.20070214.

  89. Boonstra AM, Schrama J, Fidler V, Eisma WH. The gait of unilateral transfemoral amputees. Scand J Rehabil Med. 1994;26(4):217–23.

    PubMed  CAS  Google Scholar 

  90. Hubbard WA, McElroy GK. Benchmark data for elderly, vascular trans-tibial amputees after rehabilitation. Prosthetics Orthot Int. 1994;18(3):142–9. https://doi.org/10.3109/03093649409164399.

    Article  CAS  Google Scholar 

  91. Bell JC, Wolf EJ, Schnall BL, Tis JE, Tis LL, Potter BK. Transfemoral amputations: the effect of residual limb length and orientation on gait analysis outcome measures. J Bone Joint Surg Am. 2013;95(5):408–14. https://doi.org/10.2106/JBJS.K.01446.

    Article  PubMed  Google Scholar 

  92. Renstrom P, Grimby G, Morelli B, Palmertz B. Thigh muscle atrophy in below-knee amputees. Scand J Rehabil Med Suppl. 1983;9:150–62.

    PubMed  CAS  Google Scholar 

  93. Rikli RE, Jones CJ. The reliability and validity of a 6-minute walk test as a measure of physical endurance in older adults. J Aging Phys Act. 1998;6:363–75.

  94. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–46. https://doi.org/10.1183/09031936.00150314.

  95. Desveaux L, Goldstein RS, Mathur S, Hassan A, Devlin M, Pauley T, et al. Physical activity in adults with diabetes following prosthetic rehabilitation. Can J Diabetes. 2016;40(4):336–41. https://doi.org/10.1016/j.jcjd.2016.02.003.

  96. Center for Medicare & Medicaid Services Health Technology Assessment: Lower Limb Prosthetic Workgroup Consensus Document 2017. https://www.cms.gov/Medicare/Coverage/DeterminationProcess/downloads/LLP_Consensus_Document.pdfSeptember. Accessed Apr 2, 2020.

  97. Wong CK, Young RS, Ow-Wing C, Karimi P. Determining 1-Yr prosthetic use for mobility prognoses for community-dwelling adults with lower-limb amputation: development of a clinical prediction rule. Am J Phys Med Rehabil. 2016;95(5):339–47. https://doi.org/10.1097/PHM.0000000000000383.

    Article  PubMed  Google Scholar 

  98. Roffman CE, Buchanan J, Allison GT. Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: development and validation of clinical prediction rules. Aust J Phys. 2014;60(4):224–31. https://doi.org/10.1016/j.jphys.2014.09.003.

    Article  Google Scholar 

  99. Steinberg N, Gottlieb A, Siev-Ner I, Plotnik M. Fall incidence and associated risk factors among people with a lower limb amputation during various stages of recovery - a systematic review. Disabil Rehabil. 2019;41(15):1778–87. https://doi.org/10.1080/09638288.2018.1449258.

    Article  PubMed  Google Scholar 

  100. Wong CK, Chihuri ST, Li G. Risk of fall-related injury in people with lower limb amputations: a prospective cohort study. J Rehabil Med. 2016;48(1):80–5. https://doi.org/10.2340/16501977-2042.

    Article  PubMed  Google Scholar 

  101. Dite W, Connor HJ, Curtis HC. Clinical identification of multiple fall risk early after unilateral transtibial amputation. Arch Phys Med Rehabil. 2007;88(1):109–14. https://doi.org/10.1016/j.apmr.2006.10.015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Beisheim is supported, in part, by the National Institutes of Health grant 5T32HD007490-17 and a Promotion of Doctoral Studies I from the Foundation for Physical Therapy Research. Dr. Seth is supported, in part, by a Postdoctoral Researcher Fund provided by Independence Prosthetics-Orthotics, Inc. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaclyn Megan Sions.

Ethics declarations

Conflict of Interest

Jaclyn Megan Sions reports personnel support for Emma Haldane Beisheim and Mayank Seth from the following funding sources: National Institutes of Health (grant number: 5T32HD007490-17), and Independence Prosthetics-Orthotics, Inc., during the generation of this manuscript. Emma Haldane Beisheim reports funding through the National Institutes of Health (grant number: 5T32HD007490-17) and personal fees from the Foundation for Physical Therapy Research through the Promotion of Doctoral Studies I, during the generation of this manuscript. Mayank Seth reports private funding from the Postdoctoral Researcher Fund, sponsored by Independence Prosthetics-Orthotics, Inc., during the generation of this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Amputation Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sions, J.M., Beisheim, E.H. & Seth, M. Selecting, Administering, and Interpreting Outcome Measures Among Adults with Lower-Limb Loss: an Update for Clinicians. Curr Phys Med Rehabil Rep 8, 92–109 (2020). https://doi.org/10.1007/s40141-020-00274-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-020-00274-4

Keywords

Navigation